题目:摆动排序2
Given an unsorted array nums
, reorder it such that nums[0] < nums[1] > nums[2] < nums[3]...
.
Example:
(1) Given nums = [1, 5, 1, 1, 6, 4]
, one possible answer is [1, 4, 1, 5, 1, 6]
.
(2) Given nums = [1, 3, 2, 2, 3, 1]
, one possible answer is [2, 3, 1, 3, 1, 2]
.
Note:
You may assume all input has valid answer.
Follow Up:
Can you do it in O(n) time and/or in-place with O(1) extra space?
题意:
给定一个无序的数组nums,重排序使其满足这种顺序:nums[0] < nums[1] > nums[2] < nums[3]...
Note:
可以假设所有的输入都是有效输入。
Follow Up:
是否能够在O(n)的时间复杂度或者O(1)的空间复杂度下完成算法。
思路一:
先给数组排序,然后在做调整。调整的方法是找到数组的中间的数,相当于把有序数组从中间分成两部分,然后从前半段的末尾取一个,在从后半的末尾去一个,这样保证了第一个数小于第二个数,然后从前半段取倒数第二个,从后半段取倒数第二个,这保证了第二个数大于第三个数,且第三个数小于第四个数,以此类推直至都取完。
时间复杂度O(n),空间复杂度O(n)。
代码:C++版:136ms
class Solution { public: void wiggleSort(vector<int>& nums) { vector<int> tmp = nums; int n = nums.size(), k = (n + 1)/2, j = n; sort(tmp.begin(), tmp.end()); for (int i=0; i<n; ++i) { nums[i] = i&1 ? tmp[--j] : tmp[--k]; } } };
思路二:
以中位数mid为界,将大于mid的元素排列在ix的较小部分,而将小于mid的元素排列在ix的较大部分。
时间复杂度O(n),空间复杂度O(1)。
详见:https://discuss.leetcode.com/topic/32929/o-n-o-1-after-median-virtual-indexing/2
代码:C++版:156ms
class Solution { public: void wiggleSort(vector<int>& nums) { int n = nums.size(); auto midptr = nums.begin() + n/2; nth_element(nums.begin(), midptr, nums.end()); int mid = *midptr; #define A(i) nums[(1+2*(i)) % (n|1)] int i = 0, j = 0, k = n - 1; while (j <= k) { if (A(j) > mid) swap(A(i++), A(j++)); else if (A(j) < mid) swap(A(j), A(k--)); else j++; } } };