加载数据集报错TypeError: Unexpected type <class ‘numpy.ndarray‘>

当使用cv2.imread加载图像并遇到TypeError时,原因是img数据类型为numpy.ndarray。解决方法是先通过transforms.ToTensor将其转换为Tensor格式,再进行如Resize和HorizontalFlip等transform操作。对于Image.open加载的图片,需先转为numpy.array或torch.tensor。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    用img = cv2.imread(path)加载数据集后,在进行transform时报错:TypeError: Unexpected type <class 'numpy.ndarray'>
transform = transforms.Compose([
    transforms.Resize((112, 112)),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),  # range [0, 255] -> [0.0,1.0]
    transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) 
])
报错原因:这是数据格式问题:把transforms.Resize((112, 112))去掉,直接在img = cv2.imread(path)后进行img = cv2.resize(img, (112, 112))

补充:

    cv2.imread(path)读取的图片是'numpy.ndarray'格式,要在pytorch里变化形状需要先用transforms.ToTensor()把格式转为tensor格式,才能    transforms.Resize((112, 112))与transforms.RandomHorizontalFlip(),

    Image.open(path)读取的图片是PLI格式,需要转numpy.array()或torch.tensor()转格式才能进行相应的数值操作或者张量操作

非常抱歉,我之前提供的代码中仍然存在错误。这个错误是由于我在调用 `pywt.waverec2` 函数时没有正确传递分解系数。为了解决这个问题,我们需要将小波系数转换为适当的格式。 以下是修改后的代码: ```python import os import cv2 import pywt import numpy as np def denoise_image(image): # 将图像转换为灰度图 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 选择小波函数和层数 wavelet = 'db4' level = 1 # 将图像进行小波分解 coeffs = pywt.wavedec2(gray, wavelet, level=level) # 对每个分解系数进行阈值处理 threshold = np.std(coeffs[-1]) * np.sqrt(2 * np.log(np.prod(gray.shape))) coeffs = pywt.threshold(coeffs, threshold, mode='soft', substitute=0) # 重构图像 denoised_image = pywt.waverec2(coeffs, wavelet) # 将图像转换回RGB格式 denoised_image = cv2.cvtColor(np.uint8(denoised_image), cv2.COLOR_GRAY2BGR) return denoised_image # 文件夹路径 folder_path = 'path/to/folder' # 遍历文件夹中的所有tif图片 for filename in os.listdir(folder_path): if filename.endswith('.tif'): # 读取图片 image_path = os.path.join(folder_path, filename) image = cv2.imread(image_path) # 降噪处理 coeffs = pywt.wavedec2(image, wavelet='db4', level=1) threshold = np.std(coeffs[-1]) * np.sqrt(2 * np.log(np.prod(image.shape))) coeffs = [coeffs[0]] + [pywt.threshold(c, threshold) for c in coeffs[1:]] denoised_image = pywt.waverec2(coeffs, wavelet='db4') # 将图像转换回RGB格式 denoised_image = cv2.cvtColor(np.uint8(denoised_image), cv2.COLOR_GRAY2BGR) # 保存处理后的图像 output_path = os.path.join(folder_path, 'denoised_' + filename) cv2.imwrite(output_path, denoised_image) ``` 在修改后的代码中,我们直接在循环中进行小波分解和重构,并在每次循环中对图像进行阈值处理。 请确保将代码中的 `'path/to/folder'` 替换为实际的文件夹路径。 希望这次修改能解决问题。如果还有其他问题,请随时提问。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值