深入浅出Prim算法和Kruskal算法求最小生成树:
Prim算法
首先初始化距离 正无穷。
n 次迭代(因为要选中n个点),找到不在集合(当前生成树)中的且距离当前块最小的点(记作)m点,,用m点去更新其他掉到集合中的点的距离,标记这个点,这里区别Dijkstra算法求单源最短路,Dijkstra算法是从未确定的点中找到距离最小的点,去更新到 初始点的距离。
传送门:
858. Prim算法求最小生成树 - AcWing题库
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
const int N=510,INF = 0x3f3f3f3f; //INF 表示正无穷
int n,m;
int dist[N];// 表示到集合中的最短距离
int g[N][N];
bool st[N];
int prim(){
int res=0;
memset(dist,0x3f,sizeof dist);//初始化距离
for(int i=0;i<n;i++){ //一开始集合内没有任何点
int t=-1;
for(int j=1;j<=n;j++){
// !st[j] 保证这个点在集合外
// t==-1 表示当前没有找到任何一个点,比如一开始的时候,我们的结合中是没有任何一个点,我们默认放入第一个进去。
if(!st[j]&&(t==-1||dist[t]>dist[j])){
t=j;
}
// t 存放的是距离最小的点
}
if (i && dist[t] == INF) return INF;
// 第一轮的时候不加入,因为此时只有一个点
if (i) res += dist[t];
st[t]=true; //将t这个点放入集合中
for(int j=1;j<=n;j++){
if(!st[j])
{dist[j] = min(dist[j], g[t][j]);
}
}
}
return res;
}
int main(){
scanf("%d%d", &n, &m);
memset(g, 0x3f, sizeof g);
while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
g[a][b] = g[b][a] = min(g[a][b], c); //保留长度最小的边,因为是最小生成树
}
int t = prim();
if (t == INF) puts("impossible");//不联通
else printf("%d\n", t);
return 0;
}
Kruskal算法:
传送门:
859. Kruskal算法求最小生成树 - AcWing题库
算法思想:
首先按照权重从小到大排序.
依次处理每一对,看边的两个点是否联通,使用并查集,如果判断两个点联通,有一个共同的父亲就可以。
终止条件是:加入了n-1条边。
#include <iostream>
#include <cstring>
#include <algorithm>
#include<vector>
using namespace std;
const int N =1e5+10,M=2e5+10,INF = 0x3f3f3f3f;
int n,m;
int p[N];
struct Node{
int a,b,w;
bool operator<(const Node& t){ // 重载小于运算符
return w<t.w;
}
} Nodes[M] ;//定义一个结构体数组
int find(int x){// 查找x的父亲元素
if(p[x]!=x) p[x]=find(p[x]); // 这一步使用了路径压缩,也就是让孩子节点都指向了其祖宗元素
return p[x];
}
int Kruskal(){
sort(Nodes,Nodes+m);//排序
for(int i=1;i<=n;i++) p[i]=i;
int res=0,cnt=0;//res计算权值
for(int i=0;i<m;i++){
int a=Nodes[i].a,b=Nodes[i].b,w=Nodes[i].w;
int fa=find(a),fb=find(b);
if(fa!=fb){
p[fa]=fb;//让a变成b的孩子
cnt++;//边
res+=w;
}
}
if(cnt<n-1) return INF;
return res;
}
int main()
{
scanf("%d%d",&n,&m);
for (int i = 0; i < m; i ++ )
{
int a, b, w;
scanf("%d%d%d", &a, &b, &w);
Nodes[i] = {a, b, w};//构造结构体数组
}
int res= Kruskal();
if(res==INF) puts("impossible");
else printf("%d\n",res);
return 0;
}
当然了,排序的时候还可以这样写:
bool cmp(struct Node A, struct Node B)
{
return A.w < B.w;
}
sort(Nodes, Nodes + m,cmp);//第三个参数是一个比较规则

2007

被折叠的 条评论
为什么被折叠?



