思路和方法
普通做法
最长上升子序列dp求法:f[i] = max(f[k]+1,f[i]),此时f[i]表示以i结尾的上升子序列的最大长度
优化做法
现在考虑长度为1的子序列,3和1
如果后续子序列能接到3的后面则一定能接到1的后面,故3这个子序列就不用存,因为能接在3后面一定能接在1后面,故对于长度1的子序列只需要存结尾值最小的.以此类推所有长度的子序列只需要存结尾长度最小的即可.
我们存f[i]表示长度为i的上升子序列的结尾最小值,该数组一定单调上升 (1)
当要更新以a[i]结尾的子序列的长度,需要二分查找小于a[i]的最大的数f[j] = A,a[i]接在A后面就是最优选择 (2),长度变为j+1故更新f[j+1] = a[i].
证明这个方法可以找到最长上升子序列:
证明(1)
欲证结论:令f[i]表示长度为i的子序列的结尾最小值,该数组一定严格单调上升.
如果不单调上升则存在i+1,使得f[i]>=f[i+1].则说明i+1长度子序列的结尾最小值A小于等于i长度的子序列的结尾最小值B.
截取i+1长度子序列的前i位,这个子序列最后一位肯定是小于A的(上升子序列),那么也就小于B,那么B就不是结尾长度最小的子序列,矛盾.故对于任何i和i+1都有f[i]<f[i+1].故数组f单调递增.
证明(2)
欲证结论:更新以a[i]结尾的子序列的长度,需要(二分)查找小于a[i]的最大的数f[j] = A,a[i]接在A后面就是最优选择.
假设如果接在A后面不是最优选择,那么就只能接在小于A的数后面(因为A就是小于a[i]的最大的数),又由于f数组单调递增,结尾是小于A的数的长度一定小于A,故长度不如接在A后面.所以接在A后是最大值.

本文详细介绍了如何使用动态规划和二分查找优化求解最长上升子序列问题。通过只存储每个长度上升子序列的最小结尾元素,保证了数组单调递增,从而提高效率。代码实现中展示了这种优化方法。
最低0.47元/天 解锁文章
981

被折叠的 条评论
为什么被折叠?



