2020.08.25 Datewhale组队学习 数据分析04 数据可视化

%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
text = pd.read_csv(r'result.csv')
text.head()
Unnamed: 0PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
001.00.03.0Braund, Mr. Owen Harrismale22.01.00.0A/5 211717.2500NaNS
112.01.01.0Cumings, Mrs. John Bradley (Florence Briggs Th...female38.01.00.0PC 1759971.2833C85C
223.01.03.0Heikkinen, Miss. Lainafemale26.00.00.0STON/O2. 31012827.9250NaNS
334.01.01.0Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01.00.011380353.1000C123S
445.00.03.0Allen, Mr. William Henrymale35.00.00.03734508.0500NaNS

如何让人一眼就能看懂你的数据

可视化展示泰坦尼克号数据集中男女中生存人数分布情况(用柱状图试试)。

#方法一
sex = text['Survived'].groupby(text['Sex']).sum()
sex.plot.bar()
plt.title('survived_count')
plt.show
<function matplotlib.pyplot.show(*args, **kw)>

在这里插入图片描述

#方法二
sex = text.groupby('Sex')['Survived'].sum()
sex.plot.bar()
plt.title('Survived_count')
plt.show()

在这里插入图片描述

可视化展示泰坦尼克号数据集中男女中生存人与死亡人数的比例图(用柱状图试试)。

text.groupby(['Sex','Survived'])['Survived'].count().unstack().plot(kind = 'bar',stacked = 'False')
plt.title('survived_count')
plt.ylabel('count')
Text(0, 0.5, 'count')

在这里插入图片描述

可视化展示泰坦尼克号数据集中不同票价的人生存和死亡人数分布情况。(用折线图试试)(横轴是不同票价,纵轴是存活人数)¶

#排序后绘制折线图
#构造不同票价的不同死亡情况
fare_sta = text.groupby(['Fare'])['Survived'].value_counts().sort_values(ascending = False)
fare_sta
fig = plt.figure(figsize = (8,5))
fare_sta.plot(grid = True)
plt.legend()
plt.show()

在这里插入图片描述

#排序前绘制折线图
fare_sta = text.groupby(['Fare'])['Survived'].value_counts()
fig = plt.figure(figsize = (8,6))
fare_sta.plot(grid = True)
plt.legend()
plt.show()

在这里插入图片描述

任务五:可视化展示泰坦尼克号数据集中不同仓位等级的人生存和死亡人员的分布情况。(用柱状图试试)

pclass_sta = text.groupby(['Pclass'])['Survived'].value_counts()
fig = plt.figure(figsize = (8,6))
pclass_sta.plot(grid = True)
plt.legend()
plt.show()

在这里插入图片描述

import seaborn as sns
sns.countplot(x = 'Survived', hue = 'Pclass', data = text)
<matplotlib.axes._subplots.AxesSubplot at 0x151be985988>

在这里插入图片描述

任务六:可视化展示泰坦尼克号数据集中不同年龄的人生存与死亡人数分布情况。(不限表达方式)

facet = sns.FacetGrid(text, hue="Survived",aspect=3)
facet.map(sns.kdeplot,'Age',shade= True)
facet.set(xlim=(0, text['Age'].max()))
facet.add_legend()
<seaborn.axisgrid.FacetGrid at 0x151bea0f608>

在这里插入图片描述

任务七:可视化展示泰坦尼克号数据集中不同仓位等级的人年龄分布情况。(用折线图试试)

text.Age[text.Pclass == 1].plot(kind='kde')
text.Age[text.Pclass == 2].plot(kind='kde')
text.Age[text.Pclass == 3].plot(kind='kde')
plt.xlabel("age")
plt.legend((1,2,3),loc="best")
<matplotlib.legend.Legend at 0x151beade4c8>

在这里插入图片描述

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页