唯一质因数分解定理

唯一质因数分解定理:
任意一个合数a仅能以一种方式,写成如下的乘积形式:
\(a\) =$ p1^{e1}\times p2^{e2}\times ...\times pr^{er}$
\(a\)的因子数= \((e1+1)\times (e2+1)\times ....\times (er+1)\)

const int N = (int)2e5 + 7;
int noprime[N], pcnt, p[N / 2];
int nump[N / 2], yinzi[N / 2];
int n, m, top;
void getprime(){
    pcnt = 0;
    memset(noprime, 0, sizeof(noprime));
    noprime[0] = noprime[1] = 1;
    for(int i = 2; i < N; ++i) {
        if(!noprime[i])p[pcnt++] = i;
        for(int j = 0; j < pcnt && i * p[j] < N; ++j) {
            noprime[i * p[j]] = 1;
            if(i % p[j] == 0)break;
        }
    }
}
void cal(int t){
    memset(nump, 0, sizeof(nump));
    top = -1;
    int tmp = (int)sqrt(t*1.0);
    for(int i = 0; i < pcnt && p[i] <= tmp; ++i) {
        if(t % p[i] == 0) {
            yinzi[++top] = p[i];
            while (t % p[i] == 0) {
                nump[top] ++;
                t /= p[i];
            }
        }
        if(t == 1)break;
    }
    if(t > 1) {
        yinzi[++top] = t;
        nump[top] ++;
    }
}

欧拉筛解释:

\(i\)\(prime[j]\)的整数倍时(\(i \% prime[j]\;==\;0\)),跳出循环。

因为\(i\)可以看做\(prime[j]*某个数\)\(i*prime[j+1]\)就可以看做\(prime[j]*某个数*prime[j+1]\)\(prime[j]\) 又小于 \(prime[j+1]\)

所以 \(i*prime[j+1]\) 将来必定会被 \(prime[j]*另一个i\) 给筛掉,这里就不用再做了。

同时我们可以发现在满足程序里的两个条件的时候,\(prime[j]\)必定是\(prime[j]*i\)的最小质因子。

转载于:https://www.cnblogs.com/Cwolf9/p/9513229.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值