笔记-python-standard library-8.5.heapq
1. heapq-heap queue algorithm
源码:Lib/heapq.py
this module provides an implementation of the heap queue algorithm.
heap are binary trees for which every parent node has a value less than or equal to any of its children.
堆(英语:heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵树的数组对象。堆总是满足下列性质:
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树。
模块中的API与教科书中的有两点不同:
1. 索引从0开始,在寻找子节点时需要注意;
2. pop() method returns the smallest item,not the largest。简单来说,是一个最小堆。
一般情况下,heap[0]是整个序列的最小值,可以使用heap.sort()来排序。
创建堆可以使用[],也可以使用heapify()来初始化一个列表为堆。
functions:
heapq.heappush(heap, item)将一个值推进堆,如果推进的是最小值,也会改变后面元素的排序。
heapq.heappop(heap) 将heap[0]抛出,再排序保证heap[0]是最小值。
heapq.heappushpop(heap, item) 先推进堆,再抛出一个最小值,上面两个的综合。
heapq.heapify(x) 对列表x进行堆化,仅保证heap[0]是最小值,其它部分顺序不保证。
hepq.heapreplace(heap, item) 抛出并返回最小值,推进一个新值。
heapq.merge(*iterables, key=None, reverse=False)
将多个列表合并并堆化,返回一个迭代器。
heapq.nlargest(n, iterable, key=None)
返回一个列表,其中包含给出的最大的n个元素。
heapq.nsmallest(n, iterable, key=None)同上,不过是最小的n个元素。
因为heapq默认最小值在前,因此nsmallest()效率较高,而nlargest()效率较低。