1499 图

1499 图

Description

给一个无向图,你要将这些点分成A、B两个集合,使得满足A的导出子图是一个完全图,而B的导出子图是一个没有边的图。

但是事实上你不一定能够做到,所以你允许有错误。我们定义一个完美值为:

1.如果A中两点有边相连,则增加|i-j|的完美值。
2.如果B中两点无边相连,则增加|i-j|的完美值。
(i,j是这两个点的编号)

那么,我们让完美值最大就可以了。

N <= 1000, M <= 200000

Input

N, M 表示点数和边数

M行,

u,v表示一条无向边。

(不会有重边和自环)

Output

一个数,表示最大的完美值。

Input 示例

5 5
1 2
1 3
1 4
1 5
2 3

Output 示例

11

Solution

一道最小割的题目,但下面这种神奇的方法竟然过了。。。(虽然后期重测WA了一个,要看正解请跳过下一段代码)

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int n,m,ans,map[1005][1005];
int Abs(int x){
    if (x<0) return -x;
    return x;
}
int read(){
    int ans=0;
    char ch=getchar();
    while (ch<'0' || ch>'9') ch=getchar();
    while (ch>='0' && ch<='9'){
        ans=ans*10+ch-'0';
        ch=getchar();
    }
    return ans;
}
int main(){
    scanf("%d%d",&n,&m);
    for (int i=1;i<=m;i++){
        int x=read(),y=read();
        ans+=Abs(x-y);
        map[x][y]=map[y][x]=1;
    }
    int x=0;
    for (int i=1;i<=n;i++)
        for (int j=i+1;j<=n;j++)
            x+=j-i;
    ans=max(ans,x-ans);
    printf("%d\n",ans);
}
/*这段是正解(妥妥的最小割)*/
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define N 5000005
#define INF 0x3f3f3f3f
using namespace std;
int st,ed,head[N],next[N],dis[N],son[N],q[N],/*p[200000],*/h[N],cnt;
bool vis[N];
int n,m,f[1010][1010],s[1010],t[1010];
int Abs(int x){
    if (x<0) return -x;
    return x;
}
void addedge(int u,int v,int l){
    next[++cnt]=head[u];son[cnt]=v;dis[cnt]=l;head[u]=cnt;
    next[++cnt]=head[v];son[cnt]=u;dis[cnt]=0;head[v]=cnt;
    //p[cnt-1]=cnt;p[cnt]=cnt-1;
}
bool bfs(){
    memset(h,0,sizeof(h));
    memset(vis,false,sizeof(vis));
    int hd=0,tl=1;q[1]=st;vis[st]=true;
    while (hd<tl){
        int u=q[++hd];
        int k=head[u];
        while (k!=0){
            int v=son[k];
            if ((not vis[v])&&(dis[k]>0)){
                q[++tl]=v;
                h[v]=h[u]+1;
                vis[v]=true;
            }
            k=next[k];
        }
    }
    if (h[ed]==0) return false; else return true;
}
int dfs(int u,int lim){
    if (u==ed) return lim;
    int k=head[u],l=0;
    while (k!=0){
        int v=son[k];
        if (h[v]==h[u]+1){
            int d=dfs(v,min(lim-l,dis[k]));
            dis[k]-=d;
            dis[k^1]+=d;
            l+=d;
            if (l==lim) break;
        }
        k=next[k];
    }
    return l;
}
int dinic(){
    int ans=0;
    while (bfs()){
        ans+=dfs(st,INF);
    }
    return ans;
}
int main(){
    scanf("%d%d",&n,&m);
    cnt=1;
    for (int i=1;i<=m;i++){
        int u,v;
        scanf("%d%d",&u,&v);
        f[u][v]=f[v][u]=1;
    }
    for (int i=1;i<=n;i++)
        for (int j=i+1;j<=n;j++)
            if (!f[i][j]){
                t[i]+=Abs(i-j);t[j]+=Abs(i-j);
                addedge(i,j,Abs(i-j));
                addedge(j,i,Abs(i-j));
            }
            else{
                s[i]+=Abs(i-j);s[j]+=Abs(i-j);
                addedge(i,j,Abs(i-j));
                addedge(j,i,Abs(i-j));
            }
    st=0;ed=n+1;
    int delta=0;
    for (int i=1;i<=n;i++){
        addedge(st,i,s[i]);
        addedge(i,ed,t[i]);
    }
    int ans=dinic();
    for (int i=1;i<=n;i++)
        for (int j=i+1;j<=n;j++)
            delta+=Abs(i-j);
    printf("%d\n",delta-ans/2);
    return 0;
}
阅读更多
个人分类: 图论 脑洞题
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭