Day1 summary

对比了几篇在hadoop环境中实现关联规则、频繁项集的论文,文章结构都涉及mapreduce模型、传统与改进apriori算法比较、实验结果分析(数据规模-用时or加速比,节点-用时or加速比)。有一篇北交大的毕业论文是作者在淘宝实习做的项目,很有实践参考价值。

又过了遍《machine learning》中的apriori算法,倒是关联规则函数中合并什么的又看不懂了,只能回去对比之前的笔记。

明天还是论文、应用、新邻域。

转载于:https://www.cnblogs.com/ffan/p/3659613.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值