用一架天平最少称多少次能找出这个次品?输出最少次数及称球方案
已知小球个数,用数学方法可推导出最少次数,但无法推导出所有的最佳称球方案。要做到这一点唯有代码实现。
思路:
随着称重和推导进行,对于小球集合的了解增加,在某一时刻,对小球集合所积累的知识可以量化表现为四个参数:正常小球个数、不明小球个数、疑似重球个数、疑似轻球个数。可以将它们封装为一个对象,取名为Status。
每一次称重的行为也可量化表现为8个参数,即天平左右两边四种球的个数,可将它们封装为一个对象,取名为Balance。
整个求解过程实际上就是一个求解树的构建过程,树的节点为Status或Balance对象。
求解树包括以下规律:
1) 根节点为初始Status
2) 每个Status对象的子节点都为Balance对象,含义是对此Status所有可能的称球方案
3) 每个Balance对象的子节点都为Status对象,含义是此次称重可能产生的三个结果(天平两边一样重、左边重、右边重)
求解过程:
若某个Status对象中只包括1个疑似重球或轻球或不明小球,称此Status为可解决的。若Status的正常小球数等于初始小球总数n,称此Status为不可能的。在此前提下,若一个Balance对象的3个Status子节点都是可解决的或不可能的,称此Balance对象为可解决的。若一个Status对象的某一个Balance子节点为可解决的,该Status继承可解决属性。
以广度优先的原则构建此求解树,每生成一个树的新节点,都根据新节点的可解决属性进行回溯逆推,直到根节点成为可解决的,则求解成功。
如欲求出所有最少称球次数解,则在找到第一个解后,继续完成同层的求解树构建,可求得所有最优解。
优化:
构造求解树是最朴素直观的求解过程。在求解树中的不同的分支及不同的层中可能出现完全相同的Status对象,将它们归并可大大提高算法的时间效率和减少内存占用,此时求解树变为一个图结构,在推导结束后采用图最小路径查找算法可得到最优解。此优化将导致求解过程的时间复杂度和内存使用收敛于O(n^3)
以下为代码演示实现,演示代码在找到第一个最优解后结束,且未做进一步的优化。总计约200行,预计加上优化300行。
package balance;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class WeightBall {
static int round = 1;
static int maxSteps;
public static void run(Status root, List<Status> list) { //求解
long time = System.currentTimeMillis();
List<Status> newlist = new ArrayList<Status>();
for (int i=0; i<list.size(); i++) {
Status status = list.get(i);
status.produceBalances();
for (int j=0; j<status.bls.size(); j++) {
Balance bl = status.bls.get(j);
bl