Description
聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落之间则经常发生争斗。只是,这一切都成为谜团了——聪聪根本就不知道部落究竟是如何分布的。
不过好消息是,聪聪得到了一份荒岛的地图。地图上标注了N个野人居住的地点(可以看作是平面上的坐标)。我们知道,同一个部落的野人总是生活在附近。我们把两个部落的距离,定义为部落中距离最近的那两个居住点的距离。聪聪还获得了一个有意义的信息——这些野人总共被分为了K个部落!这真是个好消息。聪聪希望从这些信息里挖掘出所有部落的详细信息。他正在尝试这样一种算法:
对于任意一种部落划分的方法,都能够求出两个部落之间的距离,聪聪希望求出一种部落划分的方法,使靠得最近的两个部落尽可能远离。
例如,下面的左图表示了一个好的划分,而右图则不是。请你编程帮助聪聪解决这个难题。
Input
输入文件第一行包含两个整数N和K(1<=N<=1000,1< K<=N),分别代表了野人居住点的数量和部落的数量。
接下来N行,每行包含两个正整数x,y,描述了一个居住点的坐标(0<=x, y<=10000)。
Output
输出一行,为最优划分时,最近的两个部落的距离,精确到小数点后两位。
Sample Input1
4 2
0 0
0 1
1 1
1 0
Sample Output1
1.00
Sample Input2
9 3
2 2
2 3
3 2
3 3
3 5
3 6
4 6
6 2
6 3
Sample Output2
2.00
题解
其实本质上就是最小生成树呀 LuoguP1195 口袋的天空
分为k个部落,也就是连n-k条边,
和口袋的天空不同的是,连完之后找跨部落的边中最短的,输出作ans就可以了
#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
struct emm{
double dis;
int l,r;
}a[1000007];
int q[1007],w[1007];
bool cmp(emm qwq,emm qaq)
{
return qwq.dis<qaq.dis;
}
int fa[1007];
int fifa(int x)
{
if(fa[x]==x)return x;
return fa[x]=fifa(fa[x]);
}
int main()
{
int n,k;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;++i)
scanf("%d%d",&q[i],&w[i]);
int tot=0;
for(int i=1;i<=n;++i)
for(int j=i+1;j<=n;++j)
{
a[++tot].l=i;
a[tot].r=j;
a[tot].dis=sqrt((q[i]-q[j])*(q[i]-q[j])+(w[i]-w[j])*(w[i]-w[j]));
}
sort(a+1,a+tot+1,cmp);
for(int i=1;i<=n;++i)fa[i]=i;
int m=n-k;
int p;
for(int i=1;i<=tot;++i)
{
int u=fifa(a[i].l),v=fifa(a[i].r);
if(u!=v)
{
m--;
fa[u]=v;
if(!m){p=i;break;}
}
}
for(int i=p+1;i<=tot;++i)
if(fifa(a[i].l)!=fifa(a[i].r))
{printf("%.2f",a[i].dis);return 0;}
}