「P4994」「洛谷11月月赛」 终于结束的起点(枚举

题目背景

终于结束的起点
终于写下句点
终于我们告别
终于我们又回到原点
……

一个个 OIer 的竞赛生涯总是从一场 NOIp 开始,大多也在一场 NOIp 中结束,好似一次次轮回在不断上演。
如果这次 NOIp 是你的起点,那么祝你的 OI 生涯如同夏花般绚烂。
如果这次 NOIp 是你的终点,那么祝你的 OI 回忆宛若繁星般璀璨。
也许这是你最后一次在洛谷上打比赛,也许不是。
不过,无论如何,祝你在一周后的比赛里,好运。

当然,这道题也和轮回有关系。

题目描述

广为人知的斐波拉契数列 \mathrm{fib}(n)fib(n) 是这么计算的

也就是 0, 1, 1, 2, 3, 5, 8, 13 \cdots0,1,1,2,3,5,8,13⋯,每一项都是前两项之和。

小 F 发现,如果把斐波拉契数列的每一项对任意大于 11 的正整数 MM 取模的时候,数列都会产生循环。

当然,小 F 很快就明白了,因为 (\mathrm{fib}(n - 1) \bmod Mfib(n1)modM) 和 (\mathrm{fib}(n - 2) \bmod M)fib(n2)modM) 最多只有 M ^ 2M2 种取值,所以在 M ^ 2M2 次计算后一定出现过循环。

甚至更一般地,我们可以证明,无论取什么模数 MM,最终模 MM 下的斐波拉契数列都会是 0, 1, \cdots, 0, 1, \cdots0,1,,0,1,⋯。

现在,给你一个模数 MM,请你求出最小的 n > 0n>0,使得 \mathrm{fib}(n) \bmod M = 0, \mathrm{fib}(n + 1) \bmod M = 1fib(n)modM=0,fib(n+1)modM=1。

输入输出格式

输入格式:

 

输入一行一个正整数 MM。

 

输出格式:

 

输出一行一个正整数 nn。

 

输入输出样例

输入样例#1:  复制
2
输出样例#1:  复制
3
输入样例#2:  复制
6
输出样例#2:  复制
24

说明

样例 1 解释

斐波拉契数列为 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \cdots0,1,1,2,3,5,8,13,21,34,⋯,在对 22 取模后结果为 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, \cdots0,1,1,0,1,1,0,1,1,0,⋯。

我们可以发现,当 n = 3n=3 时,f(n) \bmod 2= 0, f(n + 1) \bmod 2 = 1f(n)mod2=0,f(n+1)mod2=1,也就是我们要求的 nn 的最小值。

数据范围

对于 30\%30% 的数据,M \leq 18M18;

对于 70\%70% 的数据,M \leq 2018M2018;

对于 100\%100% 的数据,2 \leq M \leq 706150=2M706150=0xAC666

提示

如果你还不知道什么是取模 (\bmod)(mod),那我也很乐意告诉你,模运算是求整数除法得到的余数,也就是竖式除法最终「除不尽」的部分,也即a \bmod M =k \iff a = bM + k\ (M > 0, 0 \leq k < M)amodM=ka=bM+k (M>0,0k<M)其中 a, b, ka,b,k 都是非负整数。

如果你使用 C / C++,你可以使用 % 来进行模运算。

如果你使用 Pascal,你可以使用 mod 来进行模运算。

题解

如果这次 NOIp 是你的终点,那么祝你的 OI 回忆宛若繁星般璀璨。

哈哈哈哈为什么要一上来就放催泪弹啊一点都不感动嘤嘤嘤嘤


 

一开始淡定的打表找规律,发现跟因子有些关系,大概就是对很多数而言是质因子的f乘起来再乘反复出现的质因子之类......

然后不想肝了挂了个机跑1~706150的答案,记了个最大值,好像最大值只是个211多少的七位数......

那还规律个鬼啊,暴力啊!

 1 /*
 2 qwerta 
 3 P4994 终于结束的起点 Accepted 
 4 100
 5 代码 C++,0.25KB
 6 比赛 【LGR-055】洛谷11月月赛
 7 提交时间 2018-11-04 09:08:05
 8 耗时/内存 70ms, 808KB
 9 */
10 #include<iostream>
11 #include<cstdio>
12 #include<cmath>
13 using namespace std;
14 int main()
15 {
16     int m;
17     scanf("%d",&m);
18     int f0=1,f1=1;
19     for(long long n=2;;++n)
20     {
21         int x=(f0+f1)%m;
22         if(f1==0&&x==1)
23         {
24             cout<<n;
25             break;
26         }
27         f0=f1;
28         f1=x;
29     }
30     return 0;
31 }

 

转载于:https://www.cnblogs.com/qwerta/p/9905300.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值