Codeforces Round #374 (Div. 2) D. Maxim and Array —— 贪心

题目链接:http://codeforces.com/problemset/problem/721/D


D. Maxim and Array
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Recently Maxim has found an array of n integers, needed by no one. He immediately come up with idea of changing it: he invented positive integer x and decided to add or subtract it from arbitrary array elements. Formally, by applying single operation Maxim chooses integer i (1 ≤ i ≤ n) and replaces the i-th element of array ai either with ai + x or with ai - x. Please note that the operation may be applied more than once to the same position.

Maxim is a curious minimalis, thus he wants to know what is the minimum value that the product of all array elements (i.e. ) can reach, if Maxim would apply no more than k operations to it. Please help him in that.

Input

The first line of the input contains three integers n, k and x (1 ≤ n, k ≤ 200 000, 1 ≤ x ≤ 109) — the number of elements in the array, the maximum number of operations and the number invented by Maxim, respectively.

The second line contains n integers a1, a2, ..., an () — the elements of the array found by Maxim.

Output

Print n integers b1, b2, ..., bn in the only line — the array elements after applying no more than k operations to the array. In particular,  should stay true for every 1 ≤ i ≤ n, but the product of all array elements should be minimum possible.

If there are multiple answers, print any of them.

Examples
input
5 3 1
5 4 3 5 2
output
5 4 3 5 -1 
input
5 3 1
5 4 3 5 5
output
5 4 0 5 5 
input
5 3 1
5 4 4 5 5
output
5 1 4 5 5 
input
3 2 7
5 4 2
output
5 11 -5 


题解:

1.首先在输入时,统计负数的个数,目的是知道初始状态的乘积是正数(包括0)还是负数。

2.如果乘积为正数,那么就需要减小某个数的绝对值,使其改变符号, 而且步数越少越好,由此推出:减少绝对值最小的那个数的绝对值,可以最快改变符号,使得乘积变为负数。

3.如果乘积已经为负,那么就需要增加某个数的绝对值, 使得乘积的绝对值尽可能大, 根据基本不等式: a+b>=2*根号(a*b),若要a*b的值最大,则a==b。 可以得出结论:当a与b的差值越小时,a*b越大。或者可以自己手动推算一遍, 也可以得出这个结论。由此推出:增加绝对值最小的那个数的绝对值,使得乘积的绝对值尽可能大。

4.总的来说:就是需要对绝对值最小的数进行操作。当乘积为正或为0时, 减小其绝对值,直到符号改变; 当乘积为负时, 增加其绝对值, 使其乘积的绝对值尽可能大。 用优先队列维护。


学习之处: 

a+b=常数, 当a与b的差值越小时,a*b越大(a*b>=0)。

这里的a*b,可以假设a为绝对值最小的那个数, b为其他数的绝对值的乘积。所以这个结论也适用于多个数的乘积(将多个转为2个)。


代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <sstream>
#include <algorithm>
using namespace std;
#define ms(a, b)  memset((a), (b), sizeof(a))
#define eps 0.0000001
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+7;
const int maxn = 2e5+10;

struct node
{
    LL v, s, pos;
    bool operator<(const node&x)const{
        return v>x.v;
    }
};
priority_queue<node>q;
LL a[maxn], n, k, x, flag;

void init()
{
    scanf("%lld%lld%lld",&n, &k, &x);
    while(!q.empty()) q.pop();
    flag = 0;
    for(int i = 1; i<=n; i++)
    {
        node e;
        scanf("%lld",&a[i]);
        e.v = abs(a[i]);
        e.s = (a[i]<0);
        e.pos = i;
        q.push(e);

        if(a[i]<0) flag = !flag;
    }
}

void solve()
{
    while(k--)
    {
        node e = q.top();
        q.pop();
        if(!flag)
        {
            e.v -= x;
            if(e.v<0)
            {
                e.v = -e.v;
                e.s = !e.s;
                flag = !flag;
            }
        }
        else
        {
            e.v += x;
        }
        a[e.pos] = e.v;
        if(e.s) a[e.pos] = -a[e.pos];
        q.push(e);
    }
    for(int i = 1; i<=n; i++)
        printf("%lld ",a[i]);
    putchar('\n');
}

int main()
{
//    int T;
//    scanf("%d",&T);
//    while(T--)
    {
        init();
        solve();
    }
    return 0;
}



转载于:https://www.cnblogs.com/DOLFAMINGO/p/7538692.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值