转自https://blog.csdn.net/duan_1998/article/details/80355959
[编程题] 游历魔法王国
时间限制:1秒
空间限制:32768K
魔法王国一共有n个城市,编号为0~n-1号,n个城市之间的道路连接起来恰好构成一棵树。
小易现在在0号城市,每次行动小易会从当前所在的城市走到与其相邻的一个城市,小易最多能行动L次。
如果小易到达过某个城市就视为小易游历过这个城市了,小易现在要制定好的旅游计划使他能游历最多的城市,请你帮他计算一下他最多能游历过多少个城市(注意0号城市已经游历了,游历过的城市不重复计算)。
输入描述:
输入包括两行,第一行包括两个正整数n(2 ≤ n ≤ 50)和L(1 ≤ L ≤ 100),表示城市个数和小易能行动的次数。
第二行包括n-1个整数parent[i](0 ≤ parent[i] ≤ i), 对于每个合法的i(0 ≤ i ≤ n - 2),在(i+1)号城市和parent[i]间有一条道路连接。
输出描述:
输出一个整数,表示小易最多能游历的城市数量。
输入例子1:
5 2
0 1 2 3
输出例子1:
3
思路
https://blog.csdn.net/duan_1998/article/details/80355959
代码
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
int parent[60];
int dp[200];
int main()
{
int n, L;
cin >> n >> L;
for (int i = 0; i<n - 1; i++)
{
cin >> parent[i];
}
int mx = 0;
for (int i = 0; i<n - 1; i++)
{
dp[i + 1] = dp[parent[i]] + 1;//(0 ≤ parent[i] ≤ i),可以直接算出最长路径
mx = max(mx, dp[i + 1]);
}
int d = min(L, mx);//步数 和 树最大深度 取最小值,
cout << min(n, 1 + d + (L - d) / 2) << endl;
}//如果L>mx ,d=mx,答案 mx+(L-mx)/2+1
//如果L<mx , d=L,答案 L+1