1.概述
1.web前端框架设计
2.实体识别程序设计
3.实体查询程序设计
4.关系查询程序设计
5.图数据可视化设计2.收益
1.收益一:web前端框架
web前端框架;Python基于django的汽车知识图谱web前端框架程序设计,源码刨析和应用实践
2.收益二:实体关系查询
实体关系查询:Python基于Neo4j的图数据库实体查询和关系查询程序设计、
命名实体查询:汽车领域命名实体识别程序设计,源码刨析和应用实践
3.图数据可视化
基于开源框架Echarts的知识图谱数据可视化程序设计,源码刨析
文章目录
前言
学习背景
- 上课没有好好听,现在跟着bilibili知识图谱实战教程知识图谱实战教程_哔哩哔哩_bilibili补习一下知识记录下;
- 自己的学习笔记哈~之前记的电子笔记没有找到合适的记录软件;其实自己书写文档的功力还需要磨练,在文章逻辑思路、笔记细节等等都还有欠缺,养成一下学习习惯。
一、web前端框架设计
基于Django的汽车知识图谱web前端框架设计
- 1.django 交互流程
首先包含四部分:模型、视图、模板、控制器
·MVC的设计框架
1.模型==》和数据库进行访问的
2.视图==》前端页面的后台服务程序
3.模板==》能够直接展示给大家,能够直观看到的页面
4.控制器==》按照用户收到网址进行解析,与对应的视图进行
django路由:
·url文件:把用户的请求传送给视图
·indexview
django模板:
django视图:
django命名实体识别:
需要调用
二、通用命名实体识别
通用实体识别概念定义和类型划分
·概念定义:
·命名实体识别是信息提取、问答系统、句法分析、机器翻译、面向Semantic Web的元数据标注等应用领域的重要基础工具,在自然语言处理技术走向实用化的过程中占有重要地位
·类型划分:
·一般来说,命名实体识别的任务就是识别出待处理文本中三大类(实体、时间、数字)、七小类(人名、机构名、地点、时间、日期、货币和百分比)命名实体
·通用命名实体识别方法
·早期方法:
基于规则的方法
基于字典的方法
·传统机器学习方法
HMM
MEMM
CRF
·深度学习方法
RNN-CRF
CNN-CRF
·近期
注意力模型
迁移学习
半监督学习
通用命名实体识别方法:基于词典的方法
先分词后词性标注
·词典标注类型说明:
n/名称 np/人名 ns/地名 ni/机构名 nz/其他专名
m/数词 q/量词 mq/数量词 t/时间词 f/方位词 s/处所词
v/动词 a/形容词
·命名实体对象
·通用命名实体识别方法:开源框架CoreNLP、CRF
三、领域命名实体识别
- 品牌词的类型说明
汽车车系给与编码
使用不同类型进行划分
每一个类型都可以有个标识
视图层

模板层

四.汽车领域实体查询

Neo4j开发驱动、Py2neo开发框架
py2neo 可以进行直接的查询
·run只需要输入cypher语句
·返回一个游标对象:

Echarts参数设置:
可恶真的是一点也听不进讲的代码

五.数据可视化的展示
·数据可视化方案、Echarts方案
·源码可以在官方找到
·Echars图形可视化的效果也是可以github上展示出来的
·名字品牌名
·数据可视化--方案1 D3数据可视化效果
好像是直接拉的代码,我真的能气死别管我了。
总结
看了课程是怎么改的代码,具体实操是一点没交,看课看的上头了
本文档详细介绍了汽车知识图谱的构建过程,包括使用Django框架设计前端、基于Neo4j实现实体与关系查询、利用CoreNLP进行实体识别,并通过Echarts完成数据可视化。适合希望深入了解知识图谱构建的技术人员。


被折叠的 条评论
为什么被折叠?



