Algorithm,Mathematic - 数学的知识构成

简介

数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
  数学属性是任何事物的可量度属性,即数学属性是事物最基本的属性。可量度属性的存在与参数无关,但其结果却取决于参数的选择。例如:时间,不管用年、月、日还是用时、分、秒来量度;空间,不管用米、微米还是用英寸、光年来量度,它们的可量度属性永远存在,但结果的准确性与这些参照系数有关。
  数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。
  基础数学的知识与运用总是个人与团体生活中不可或缺的一块。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因著和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。
  今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家亦研究没有任何实际应用价值的纯数学,即使其应用常会在之后被发现。
  创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯粹数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。

  

数学的历史

奇普,印加帝国时所使用的计数工具。数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语μαθηματικός(mathematikós)意思是“学问的基础”,源于μάθημα(máthema)(“科学,知识,学问”)。
  数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。
  更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。
  从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。
  到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
  数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”

 

 

 

数学分支  

 1.算术


  2.初等代数


  3.高等代数


  4. 数论


  5.欧式几何


  6.非欧式几何


  7.解析几何


  8.微分几何


  9.代数几何


  10.射影几何学


  11.拓扑几何学


  12.拓扑学


  13.分形几何


  14.微积分学


  15. 实变函数论


  16.概率和数量统计


  17.复变函数论


  18.泛函分析


  19.偏微分方程


  20.常微分方程


  21.数理逻辑


  22.模糊数学


  23.运筹学


  24.计算数学


  25.突变理论


  26.数学物理学


 ............

 

 

数学的各领域  

早期的数学完全着重在演算实际运算的需要上,有如反映在中国算盘上的一般。如同上

面所述一般,数学主要的学科首要产生于商业上计算的需要、了解数字间的关系、测量土地及预测天文事

件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的子领域相

关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑

、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。


  数量


  数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整

数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。数论还包括两个被广为探

讨的未解问题:孪生素数猜想及哥德巴赫猜想。


  当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以

实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。

自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导

致了基数和之后对无限的另外一种概念:艾礼富数,它允许无限集合之间的大小可以做有意义的比较。


  结构


  许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其

他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至

向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析

则将其扩展至第四个基本的领域内,即变化。


  空间


  空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及数,且包含有着名的勾股定理。现

今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演著核心的角色)及拓扑学。数

和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计

算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓

扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。在其许多分支中,拓扑学可能是二

十世纪数学中有着最大进展的领域,并包含有存在久远的庞加莱猜想及有争议的四色定理,其只被电脑证

明,而从来没有由人力来验证过。


  基础与哲学


  为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。康托(Georg Cantor,1845-1918)

首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是

相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展

带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,就连被誉为“博大精深

,富于创举”的数学家Pioncare也把集合论比作有趣的“病理情形”,甚至他的老师Kronecker还击

Cantor是“神经质”,“走进了超越数的地狱”.对于这些非难和指责,Cantor仍充满信心,他说:“我

的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.”他还指出:“数学的本质在于它

的自由性,不必受传统观念束缚。”这种争辩持续了十年之久。Cantor由于经常处于精神压抑之中,致使

他1884年患了精神分裂症,最后死于精神病院。


  然而,历史终究公平地评价了他的创造,集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分

析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国

传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把

Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。


  数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德

尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代

逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。


  恩格斯说:“数学是研究现定世界的数量关系与空间形式的科学。”


  离散数学


  离散数学是指对理论计算机科学最有用处的数学领域之总称,包含有可计算理论、计算复杂性理论及

信息论。可计算理论检查电脑的不同理论模型之极限,包含现知最有力的模型-图灵机。复杂性理论研究

可以由电脑做为较易处理的程度;有些问题即使理论是可以以电脑解出来,但却因为会花费太多的时间或

空间而使得其解答仍然不为实际上可行的,尽管电脑硬件的快速进步。最后,信息论专注在可以储存在特

定媒体内的资料总量,且因此有压缩及熵等概念。


  做为一相对较新的领域,离散数学有许多基本的未解问题。其中最有名的为P/NP问题-千禧年大奖难

题之一。一般相信此问题的解答是否定的。


  应用数学


  应用数学思考将抽象的数学工具运用在解答科学、工商业及其他领域上之现实问题。应用数学中的一

重要领域为统计学,它利用机率论为其工具并允许对含有机会成分的现象进行描述、分析与预测。大部份

的实验、测量及观察研究需要统计对其资料的分析。(许多的统计学家并不认为他们是数学家,而比较觉

得是合作团体的一份子。)数值分析研究如何有效地用电脑的方法解决大量因太大而不可能以人类的演算

能力算出的数学问题;它亦包含了对计算中舍入误差或其他来源的误差之研究。


  模糊数学


  现代数学是建立在集合论的基础上。集合论的重要意义就一个侧面看,在与它把数学的抽象能力延伸

到人类认识过程的深处。一组对象确定一组属性,人们可以通过说明属性来说明概念(内涵),也可以通

过指明对象来说明它。符合概念的那些对象的全体叫做这个概念的外延,外延其实就是集合。从这个意义

上讲,集合可以表现概念,而集合论中的关系和运算又可以表现判断和推理,一切现实的理论系统都一可

能纳入集合描述的数学框架。


  但是,数学的发展也是阶段性的。经典集合论只能把自己的表现力限制在那些有明确外延的概念和事

物上,它明确地限定:每个集合都必须由明确的元素构成,元素对集合的隶属关系必须是明确的,决不能

模棱两可。对于那些外延不分明的概念和事物,经典集合论是暂时不去反映的,属于待发展的范畴。


  在较长时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,获得显著效果。但是,在

客观世界中还普遍存在着大量的模糊现象。以前人们回避它,但是,由于现代科技所面对的系统日益复杂

,模糊性总是伴随着复杂性出现。


  各门学科,尤其是人文、社会学科及其它“软科学”的数学化、定量化趋向把模糊性的数学处理问题

推向中心地位。更重要的是,随着电子计算机、控制论、系统科学的迅速发展,要使计算机能像人脑那样

对复杂事物具有识别能力,就必须研究和处理模糊性。


  我们研究人类系统的行为,或者处理可与人类系统行为相比拟的复杂系统,如航天系统、人脑系统、

社会系统等,参数和变量甚多,各种因素相互交错,系统很复杂,它的模糊性也很明显。从认识方面说,

模糊性是指概念外延的不确定性,从而造成判断的不确定性。


  在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述

。比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。在人们的工作经验中,往往也有许多模

糊的东西。例如,要确定一炉钢水是否已经炼好,除了要知道钢水的温度、成分比例和冶炼时间等精确信

息外,还需要参考钢水颜色、沸腾情况等模糊信息。因此,除了很早就有涉及误差的计算数学之外,还需

要模糊数学。


  人与计算机相比,一般来说,人脑具有处理模糊信息的能力,善于判断和处理模糊现象。但计算机对

模糊现象识别能力较差,为了提高计算机识别模糊现象的能力,就需要把人们常用的模糊语言设计成机器

能接受的指令和程序,以便机器能像人脑那样简洁灵活的做出相应的判断,从而提高自动识别和控制模糊

现象的效率。这样,就需要寻找一种描述和加工模糊信息的数学工具,这就推动数学家深入研究模糊数学

。所以,模糊数学的产生是有其科学技术与数学发展的必然性。

 

 

广义的数学分类  

从纵向划分


  1、初等数学和古代数学:这是指17世纪以前的数学。主要是古希腊时期建立的欧几里得几何学,古

代中国、古印度和古巴比伦时期建立的算术,欧洲文艺复兴时期发展起来的代数方程等。


  2、变量数学:是指17--19世纪初建立与发展起来的数学。从17世纪上半叶开始的变量数学时期,可

以分为两个阶段:17世纪的创建阶段(英雄时代)与18世纪的发展阶段(创造时代)。


  3、近代数学:是指19世纪的数学。近代数学时期的19世纪是数学的全面发展与成熟阶段,数学的面

貌发生了深刻的变化,数学的绝大部分分支在这一时期都已经形成,整个数学呈现现出全面繁荣的景象。


  4、现代数学:是指20世纪的数学。1900年德国著名数学家希尔伯特(D. Hilbert)在世界数学家大

会上发表了一个著名演讲,提出了23个预测和知道今后数学发展的数学问题(见下),拉开了20世纪现代

数学的序幕。


注:希尔伯特的23个问题——在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。他在讲演中所阐发的想信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。


  希尔伯特的23个问题分属四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题属于代数和几何问题;第19到第23问题属于数学分析。 现在只列出一张清单:


  (1)康托的连续统基数问题。


  (2)算术公理系统的无矛盾性。


  (3)只根据合同公理证明等底等高的两个四面体有相等之体积是不可能的。


  (4)两点间以直线为距离最短线问题。


  (5)拓扑学成为李群的条件(拓扑群)。


  (6)对数学起重要作用的物理学的公理化。


  (7)某些数的超越性的证明。


  (8)素数分布问题,尤其对黎曼猜想、哥德巴赫猜想和孪生素共问题。


  (9)一般互反律在任意数域中的证明。


  (10)能否通过有限步骤来判定不定方程是否存在有理整数解?


  (11)一般代数数域内的二次型论。


  (12)类域的构成问题。


  (13)一般七次代数方程以二变量连续函数之组合求解的不可能性。


  (14)某些完备函数系的有限的证明。


  (15)建立代数几何学的基础。


  (16)代数曲线和曲面的拓扑研究。


  (17)半正定形式的平方和表示。


  (18)用全等多面体构造空间。


  (19)正则变分问题的解是否总是解析函数?


  (20)研究一般边值问题。


  (21)具有给定奇点和单值群的Fuchs类的线性微分方程解的存在性证明。


  (22)用自守函数将解析函数单值化。


  (23)发展变分学方法的研究。


  从横向划分


  1、基础数学(英文:Pure Mathematics)。又称为理论数学或纯粹数学,是数学的核心部分,包含

代数、几何、分析三大分支,分别研究数、形和数形关系。


  2、应用数学。简单地说,也即数学的应用。


  3、计算数学。研究诸如计算方法(数值分析)、数理逻辑、符号数学、计算复杂性、程序设计等方

面的问题。该学科与计算机密切相关。


  4、概率统计。分概率论与数理统计两大块。5、运筹学与控制论。运筹学是利用数学方法,在建立模

型的基础上,解决有关人力、物资、金钱等的复杂系统的运行、组织、管理等方面所出现的问题的一门学

科。

 

 

 

数学发展史上的三次危机  

1.毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一

个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物

皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。毕达哥拉

斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢

?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了

数学史上第一个无理数√2 的诞生。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度

的范围内都可以表示成有理数。可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存

在而推翻了!这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“

第一次数学危机”。由两千多年后的数学家们建立的实数理论才消除它。


2.第二次数学危机导源于微积分工具的使用。贝克莱一针见血地指出牛顿在对x^n(n是正整数)求导时

既把△x不当做0看而又把△x当作0看是一个严重的自相矛盾,从而几乎使微积分停滞不前,后来还是柯西

和魏尔斯特拉斯等人提出无穷小是一个无限向0靠近,但是永远不等于0的变量,这才把微积分重新稳固地

建立在严格的极限理论基础上,从而消灭的这次数学危机!

 

3.十九世纪下半叶,康托尔创立了著名的集合论。1900年,国际数学家大会上,法国著名数学家庞加

莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝

对的严格性已经达到了……”可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的

!这就是英国数学家罗素提出的著名的罗素悖论。

  罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中

律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己

是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于

S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。 可以说,这一悖论就象在平

静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。

  危机产生后,数学家纷纷提出自己的解决方案。比如ZF公理系统。这一问题的解决只现在还在进行中

。罗素悖论的根源在于集合论里没有对集合的限制,以至于让罗素能构造一切集合的集合这样“过大”的

集合,对集合的构造的限制至今仍然是数学界里一个巨大的难题!

  

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值