hdu 1068 最大独立集合

本文深入探讨了在图论中寻找最大独立集的问题,详细解释了如何通过算法确定图中不存在边连接的顶点集合,特别关注于情侣配对问题的解决思路。文章通过实例演示了如何使用深度优先搜索(DFS)来实现最大匹配数的计算,进而求得最大独立集的大小。
摘要由CSDN通过智能技术生成
题意:题意:n个同学,一些男女同学会有缘分成为情侣,格式ni:(m) n1 n2 n3表示同学ni有缘与n1,n2,n3成为情侣,求集合中不存在有缘成为情侣的同学的最大同学数。
题解:
独立集:图的顶点集的子集,其中任意两点不相邻
最大独立集 = 顶点数 - 最大匹配数
zsd:由于本题是从整个点集搜索,并不是将点集分开成(A)(B),(1->2)(2->1)对称存在,所以相当于搜索了两遍
#include<iostream> using namespace std; int n,map[1555][1555],pre[1555],v[1555]; int dfs(int k) { for(int i=0;i<n;i++) { if(v[i]||!map[i][k]||i==k) continue; v[i]=1; if(pre[i]==-1||dfs(pre[i])) { pre[i]=k; return 1; } } return 0; } int main() { int a,b,t,i,j,count; char f; while(cin>>n) { memset(map,0,sizeof(map)); for(i=1;i<=n;i++) { //scanf("%d:(%d)",&a,&t); cin>>a>>f>>f>>t>>f; for(j=1;j<=t;j++) { cin>>b; map[a][b]=map[b][a]=1; } } memset(pre,-1,sizeof(pre)); count=0; for(i=0;i<n;i++) { memset(v,0,sizeof(v)); if(dfs(i)) count++; } cout<<n-count/2<<endl; } return 0; }

 

转载于:https://www.cnblogs.com/zhangdashuai/p/3701482.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值