机器学习-入门2-单线性回归模型

机器学习-入门1-单线性回归

1.线性回归模型表示:

根据之前的数据预测 一个准确的输出值(连续),就是线性回归模型
另一个模型是:分类问题
分类问题与回归问题的区别是:预测离散类型值

2. 代价函数:

我们要 回归 的一个函数(hypothesis)内部肯定有参数(parameters),比如简单的一次函数,y=kx+b中的k,b都是参数;
参数的不同,对应的函数就不同
函数不同,建模的误差就不同
我们根据误差不同,构建代价函数,目的就是找到建模误差(modeing error)最小,最合理的函数

常见代价函数有:平方误差代价函数(一般针对线性回归问题,都是用这个代价函数),当然还有其他的代价函数。

3.代价函数找最优解–梯度下降

梯度下降:从函数曲线任意一点做初始点,然后不断地自主按照学习频率去找更有解,直至找到局部最优解的过程
在这里插入图片描述
批量梯度下降:两个参数同时更新

其他的找最优解的方法还有:正规方程方法(数据量小时候更适用,以后讲)

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页