深度学习笔记5:池化层的实现

池化层的推导 池化层的输入一般来源于上一个卷积层,主要作用是提供了很强的鲁棒性(例如max-pooling是取一小块区域中的最大值,此时若此区域中的其他值略有变化,或者图像稍有平移,pooling后的结果仍不变),并且减少了参数的数量,防止过拟合现象的发生。池化层一般没有参数,所以反向传播的...

2017-11-01 23:42:51

阅读数 2900

评论数 0

ubuntu 安装caffe精简教程

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-insta...

2017-04-07 18:21:38

阅读数 6219

评论数 0

caffe 实现多标签输入(multilabel、multitask)

caffe 本身并不支持 多类标的输入, 该框架主要用于解决图片分类的问题,而目前,两个重要的问题需要多标签的输入:多任务学习(multi-task)和多标签分类(multi-label),本文针对这两个问题,实现了多标签的输入            目前,网上流行的多标签输入方法主要...

2017-03-16 15:25:46

阅读数 6489

评论数 0

梳理caffe代码loss(二十二)

下面是一个博友对于NG课程的翻译: 接下来偷懒一下直接上传图片,caffe中的常用的loss函数(后面文章会梳理每一个Loss): loss有一个细节问题就是Loss weights(损失权重),用来表...

2017-03-05 17:07:55

阅读数 6120

评论数 0

生成hdf5文件用于多标签训练

导入相关库 import random from PIL import Image import numpy as np import h5py1234512345 文件配置 IMAGE_DIR = ['image_train', 'image_test'] HDF5_FILE = [...

2017-02-24 14:21:20

阅读数 7170

评论数 0

caffe HDF5Data 层使用及数据生成

参考文章:http://blog.csdn.NET/shuzfan/article/details/52503683 http://www.cnblogs.com/yinheyi/p/6083855.html 有些时候,我们的输入不是标准的图像,而是其它一些格式,比如:频谱图、特征...

2017-02-24 14:19:14

阅读数 8928

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭