性能度量

错误率与精度 查准率、查全率与F1 ROC与AUC 代价敏感错误率与代价曲线 比较检验 假设检验 交叉验证t检验 McNemar检验 Friedman检验与Nemenyi后续检验 偏差与方差

2016-12-27 20:43:49

阅读数:6062

评论数:0

机器学习常用算法

线性模型 决策树 神经网络 支持向量机 贝叶斯分类器 集成学习 聚类 降维与度量学习 特征选择与稀疏学习 计算学习理论 半监督学习 概率图模型 规则学习 强化学习

2016-12-26 23:58:08

阅读数:6154

评论数:0

Fuzzy c-means (FCM)聚类算法

原理  允许同一数据属于多个不同的类。该算法(developed by Dunn in 1973 and improved by Bezdek in 1981)经常用于模式识别,基于最小化 下列目标函数:       ,      其中, m 是大于1的实数,uij 是xi 属于类别 ...

2016-12-26 22:20:20

阅读数:7858

评论数:0

Lua中的九九乘法表以及字符串拼接

for m=1,9 do // for循环1到9 local s = "" // 定义一个用来输出的字符串S for n=1,9 do ...

2016-12-22 11:40:56

阅读数:6995

评论数:0

cmake指定c++编译版本

修改 CMakeLists.txt 文件,添加如下命令 SET(CMAKE_C_COMPILER "/home/public/local/bin/gcc") SET(CMAKE_CXX_COMPILER "/home/public/local/bin/g+...

2016-12-22 11:29:39

阅读数:13099

评论数:0

Adversarial Nets Papers

https://github.com/zhangqianhui/AdversarialNetsPapers

2016-12-21 21:42:41

阅读数:11531

评论数:0

最临近、双线性、三次卷积插值(图像放缩)

对图像进行放缩,实际上根据原图像的像素信息推导出放缩后图像的像素信息,实际上是通过插值实现了这一问题。常用的插值算法由以下四种: 1.    最近像素插值算法(Nearest Neighbour interpolation)   最近像素插值算法是最简单的一种插值算法,当图片放大时,缺...

2016-12-21 21:19:15

阅读数:8641

评论数:0

语言表示学习

2016-12-21 21:02:27

阅读数:6334

评论数:0

基本Kmeans算法介绍及其实现

1.基本Kmeans算法[1] [cpp] view plain copy 选择K个点作为初始质心   repeat       将每个点指派到最近的质心,形成K个簇       重新计算每个簇的质心   until 簇不发生变化或达到最大迭...

2016-12-21 00:48:41

阅读数:6190

评论数:0

ResNet && DenseNet(原理篇)

这篇博客讲现在很流行的两种网络模型,ResNet和DenseNet,其实可以把DenseNet看做是ResNet的特例  文章地址:  [1]Deep Residual Learning for Image Recognition,CVPR2015  [2]Densely Connected...

2016-12-20 10:08:08

阅读数:8817

评论数:0

如何在Ubuntu系统下安装使用LaTeX

LaTeX是一款强大的排版系统,尤其在编辑复杂的数学公式时具有其他软件无法比拟的优势。那么,如何在Ubuntu系统下使用LaTeX呢? 工具/原料 Ubuntu系统 联网环境 方法/步骤 1 首先,同时按下“Alt+Ctrl+t”键,...

2016-12-19 19:41:00

阅读数:8871

评论数:0

OpenCV参考手册之Mat类详解(三)

译文参考The OpenCV Reference Manual (Release 2.3)August 17 2011 Mat::eye 返回一个恒等指定大小和类型矩阵。 C++: static MatExpr Mat::eye(int rows, int cols, inttype) ...

2016-12-18 15:52:35

阅读数:6194

评论数:0

关于SVM一篇比较全介绍的博文

转自:http://blog.csdn.net/v_july_v/article/details/7624837 前言     动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间...

2016-12-16 17:50:54

阅读数:18677

评论数:2

深度|NIPS 2016最全盘点:主题详解、前沿论文及下载资源(附会场趣闻)

机器之心编辑 参与:微胖、杜夏德、吴攀、李亚洲 当地时间 12 月 5 日到 10 日,机器学习和计算神经科学的国际顶级会议第 30 届神经信息处理系统大会(NIPS 2016)在西班牙巴塞罗那举行。在这次会议上,人工智能和机器学习领域的研究者为我们呈现了这一领域的研究前沿,其中包括:...

2016-12-14 10:53:37

阅读数:6884

评论数:0

用深度学习来获取文本语义:词向量应用于自然语言处理

词向量是一种把词处理成向量的技术,并且保证向量间的相对相似度和语义相似度是相关的。这个技术是在无监督学习方面最成功的应用之一。传统上,自然语言处理(NLP)系统把词编码成字符串。这种方式是随意确定的,且对于获取词之间可能存在的关系并没有提供有用的信息。词向量是NLP领域的一个替代方案。它把词或短语...

2016-12-14 10:35:04

阅读数:8173

评论数:0

读取yuv并转化为RGB数据在Opencv中打开显示

#include #include #include #include #include #include using namespace std; using namespace cv; const int width = 1280; const int height = 7...

2016-12-14 10:15:39

阅读数:6673

评论数:0

深度学习word2vec笔记之算法篇

深度学习word2vec笔记之算法篇 声明: 1)该博文是Google专家以及多位博主所无私奉献的论文资料整理的。具体引用的资料请看参考文献。具体的版本声明也参考原文献 2)本文仅供学术交流,非商用。所以每一部分具体的参考资料并没有详细对应,更有些部分本来就是直接从其他博客复制过来的...

2016-12-09 17:51:13

阅读数:6395

评论数:0

Deep Learning in NLP (一)词向量和语言模型

这篇博客是我看了半年的论文后,自己对 Deep Learning 在 NLP 领域中应用的理解和总结,在此分享。其中必然有局限性,欢迎各种交流,随便拍。   Deep Learning 算法已经在图像和音频领域取得了惊人的成果,但是在 NLP 领域中尚未见到如此激动人心的结果。关于这个原因,引一...

2016-12-09 17:03:24

阅读数:6328

评论数:0

faster-rcnn 之 RPN网络的结构解析

【说明】:欢迎加入:faster-rcnn 交流群 238138700,我想很多人在看faster-rcnn的时候,都会被RPN的网络结构和连接方式纠结,作者在文中说的不是很清晰,这里给出解析; 【首先】:大家应该要了解卷积神经网络的连接方式,卷积核的维度,反向传播时是如何灵活的插入一层;这里我...

2016-12-08 11:03:03

阅读数:7901

评论数:2

google batchnorm 资料总结

训练webface 李子青提出的大网络,总是出现过拟合,效果差。 尝试使用batchnorm。 参考博客: http://blog.csdn.NET/malefactor/article/details/51549771 cnn 和rnn 中如何引入batchnorm http://b...

2016-12-04 13:03:01

阅读数:6262

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭