树莓派 FFmpeg 支持GPU硬解码

1. 安装x264 git clone git://git.videolan.org/x264.git ./configure \ > --disable-shared --enable-static \ > --enable-strip \ > --disable-cl ma...

2017-04-30 02:55:58

阅读数:10809

评论数:1

樹莓派架設 RTMP 串流(Streaming)伺服器,傳送即時攝影機影像

這裡介紹使用樹莓派安裝 nginx 架設 RTMP 串流伺服器,傳送即時的攝影機影像。 樹莓派加上一個網路攝影機(webcam)之後,就可以用來打造一個即時的 live 影像串流伺服器,作為簡單的監控設備,讓您透過電腦或是手機看到即時的攝影機畫面。 在本篇教學中所使用的設備與規格為: 樹...

2017-04-29 21:26:53

阅读数:6790

评论数:0

Raspberry 源

deb http://mirrors.tuna.tsinghua.edu.cn/raspbian/raspbian/ jessie main contrib non-free rpi deb-src http://mirrors.tuna.tsinghua.edu.cn/raspbian/ra...

2017-04-29 18:05:55

阅读数:5822

评论数:0

Ubuntu MATE for the Raspberry Pi 2 and Raspberry Pi 3

Making a microSDHC The image can be directly written to a microSDHC using a utility like dd, but we prefer ddrescue (from the gddrescue, for e...

2017-04-29 17:05:17

阅读数:5964

评论数:0

Adversarial Neural Machine Translation

https://arxiv.org/abs/1704.06933 Lijun Wu, Yingce Xia, Li Zhao, Fei Tian, Tao Qin, Jianhuang Lai, Tie-Yan Liu (Submitted on 20 Apr 2017) ...

2017-04-28 00:39:56

阅读数:6043

评论数:0

ORB-SLAM2

Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now supporte...

2017-04-28 00:21:50

阅读数:7474

评论数:0

DBoW3

For an improved version of this project, please see FBOWhttps://github.com/rmsalinas/fbow. DBoW3 is an improved version of the DBow2 library, an o...

2017-04-27 23:15:23

阅读数:8349

评论数:0

【泡泡机器人原创专栏】DBoW3 视觉词袋模型、视觉字典和图像数据库分析

前言         图像数据库、视觉字典和视觉词袋向量是SLAM、计算机视觉、3D物体识别和卷积神经网络图像处理的重要基础工具。所谓“万丈高楼平地起”,在深刻理解这些基本工具的基础之上,根据开源项目构建自己的工程就可以做到游刃有余了。在工程实践中,开源代码往往不能满足业务需求,而对计算机视...

2017-04-27 23:14:31

阅读数:9452

评论数:0

最新版的OpenCV中新增加的ORB特征的使用

看到OpenCV2.3.1里面ORB特征提取算法也在里面了,套用给的SURF特征例子程序改为ORB特征一直提示错误,类型不匹配神马的,由于没有找到示例程序,只能自己找答案。 (ORB特征论文:ORB: an efficient alternative to SIFT or SURF.点击下载...

2017-04-27 23:10:52

阅读数:6548

评论数:0

ORB-SLAM(1) --- 让程序飞起来

1. ORB SLAM简介       ORBSLAM是15年出的比较完备的单目slam算法,orb指的是一种旋转不变性特征,整个算法均是基于orb特征实现的,不同于基于稠密或半稠密地图的slam,orbslam是一个基于特征点地图的slam。最新的orbslam的进展是基于orbslam的...

2017-04-27 23:00:44

阅读数:6357

评论数:0

IMPLEMENTING A CNN FOR TEXT CLASSIFICATION IN TENSORFLOW

The full code is available on Github. In this post we will implement a model similar to Kim Yoon’s Convolutional Neural Networks for Sentence ...

2017-04-27 00:54:07

阅读数:6577

评论数:0

UNDERSTANDING CONVOLUTIONAL NEURAL NETWORKS FOR NLP

When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs were responsible for major breakthroughs in Image...

2017-04-27 00:53:28

阅读数:6104

评论数:0

reinforce

I am studying RL with reinforcement/reinforce.py in pytorch/examples. I have some questions about it. What does action.reinforce(r)22 internally d...

2017-04-26 00:15:47

阅读数:5919

评论数:0

pytorch rl code

Asynchronous Advantage Actor Critic (A3C) from "Asynchronous Methods for Deep Reinforcement Learning" https://github.com/ikostrikov/pytorc...

2017-04-26 00:13:37

阅读数:6774

评论数:0

基于强化学习的文本生成技术

2013年以来Deep mind团队相继在NIPS和Natures上发表了用深度增强(强化)学习玩Atari游戏,并取得良好的效果,随后Alpha go与李世乭的一战更使得深度增强学习家喻户晓。在游戏上取得了不错的成果后,深度增强学习也逐渐被引入NLP领域。本期介绍目前NLP领域较为热点的研究方向...

2017-04-25 01:29:49

阅读数:9885

评论数:1

MIT最新算法,双向传播比BP快25倍深度学习

反向传播(BP)算法被认为是用于训练深度神经网络的“事实上”(de-facto)的方法。它使用前馈权重的转置,以精确的方式将输出层的误差反向传播到隐藏层。然而,有人认为,这在生物学上是不合理的,因为在生物神经系统中,带有准确输入权重的误差信号的反向传播被认为是不可能的。在本研究中,基于神经科学和与...

2017-04-25 00:58:10

阅读数:7057

评论数:0

Trust Region Policy Optimization

https://arxiv.org/abs/1502.05477 Trust Region Policy Optimization John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, Pieter ...

2017-04-25 00:11:45

阅读数:7141

评论数:0

读论文Trust Region Policy Optimization

http://www.jianshu.com/p/34c2d8b31801 这篇论文的作者星光闪耀,都是大牛级人物,而且是最顶尖的那种。第一作者是Schulman(cs294课程的主讲人)、Levine和Abbeel也在作者名单里面。 论文首先通过一些surrogate目标函数...

2017-04-24 23:48:19

阅读数:7103

评论数:0

深度卷积神经网络在目标检测中的进展

近些年来,深度卷积神经网络(DCNN)在图像分类和识别上取得了很显著的提高。回顾从2014到2016这两年多的时间,先后涌现出了R-CNN,FastR-CNN,FasterR-CNN,ION,HyperNet,SDP-CRC,YOLO,G-CNN,SSD等越来越快速和准确的目标检测方法。 1.基...

2017-04-24 23:08:28

阅读数:7558

评论数:0

论文笔记:Deep Learning [nature review by Lecun, Bengio, & Hinton]

如今,机器学习的技术在我们的生活中扮演着越来越重要的角色。从搜索引擎到推荐系统,从图像识别到语音识别。而这些应用都开始逐渐使用一类叫做深度学习(Deep Learning)的技术。 传统机器学习算法的局限性在于,它们往往很难处理那些未被加工过的自然数据(natural data),例如一张原...

2017-04-24 22:57:05

阅读数:7779

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭