Focal Loss论文阅读笔记

Focal Loss for Dense Object Detection引入问题目前目标检测的框架一般分为两种:基于候选区域的two-stage的检测框架(比如fast r-cnn系列),基于回归的one-stage的检测框架(yolo,ssd这种),two-stage的效果好,one-stag...

2018-06-15 16:57:21

阅读数:111

评论数:0

一个图的连通子图个数

问题描述:给出一个无向图,输出图中连通分支的个数。无向图的连通分支是一个子图,因此在子图两个节点之间至少存在一个路径。 输入:给出一个连通图的二维数组0100010100010000000000000输出:联通子图的个数思路:从二位数组的第一行开始遍历,只遍历上三角(因为无向图是对称的),遍历第i...

2018-06-15 16:56:05

阅读数:152

评论数:0

机器学习中正则化项L1和L2的直观理解

正则化(Regularization)机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数。L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函...

2018-06-15 16:45:29

阅读数:143

评论数:1

卷积神经网络物体检测之感受野大小计算

学习RCNN系列论文时, 出现了感受野(receptive field)的名词, 感受野的尺寸大小是如何计算的,在网上没有搜到特别详细的介绍, 为了加深印象,记录下自己对这一感念的理解,希望对理解基于CNN的物体检测过程有所帮助。1 感受野的概念  在卷积神经网络中,感受野的定义是 卷积神经网络每...

2018-06-15 10:58:45

阅读数:122

评论数:0

基于深度学习的OCR-from 美團技術團隊

https://www.jisuapi.com/api/12行数据的话 可以参考https://github.com/wanghaisheng/awesome-ocr/wiki/Training-an-Ocropus-OCR-model-中文单字的数据可以参考https://github.com/...

2018-06-09 16:12:15

阅读数:167

评论数:0

VALSE2017系列之二: 边缘检测领域年度进展报告

深度学习大讲堂致力于推送人工智能,深度学习方面的最新技术,产品以及活动。请关注我们的知乎专栏!编者按:边缘检测是图像处理和计算机视觉中的基本问题,通过标识数字图像中亮度变化明显的点,来捕捉图像属性中的显著变化,包括深度上的不连续、表面方向的不连续、物质属性变化、和场景照明变化。南开大学的程明明副教...

2018-06-09 15:59:12

阅读数:208

评论数:0

OpenCV探索之路(七):霍夫变换

我们如何在图像中快速识别出其中的圆和直线?一个非常有效的方法就是霍夫变换,它是图像中识别各种几何形状的基本算法之一。霍夫线变换霍夫线变换是一种在图像中寻找直线的方法。OpenCV中支持三种霍夫线变换,分别是标准霍夫线变换、多尺度霍夫线变换、累计概率霍夫线变换。在OpenCV中可以调用函数Hough...

2018-06-03 17:13:36

阅读数:123

评论数:0

OpenCV探索之路(六):边缘检测(canny、sobel、laplacian)

边缘检测的一般步骤:滤波——消除噪声增强——使边界轮廓更加明显检测——选出边缘点Canny算法Canny边缘检测算法被很多人推崇为当今最优秀的边缘检测算法,所以我们第一个就介绍他。opencv中提供了Canny函数。#include<opencv2\opencv.hpp&am...

2018-06-03 17:12:11

阅读数:120

评论数:0

基于深度学习的行人重识别研究综述

前言:行人重识别(Person Re-identification)也称行人再识别,本文简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。在监控视频中,由于相机分辨率和拍摄角度的缘故,...

2018-06-03 15:44:13

阅读数:525

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭