Trends in Integration of Vision and Language Research: A Survey of Tasks, Datasets, and Methods

本文概述了视觉与语言集成领域的最新进展,包括视觉描述生成、视觉叙事、视觉问答、视觉对话和视觉推理等任务,以及相关的数据集和评价指标。此外,还讨论了未来的研究方向,如利用外部知识、解决大规模数据限制和新型神经架构的发展。
摘要由CSDN通过智能技术生成

Tasks

Visual Description Generation

Image Description Generation

Standard Image Description Generation

Dense Image Description Generation:旨在局部目标处生成描述

Image Paragraph Generation:生成段落

Spoken Language Image Description Generation:变写为说

Stylistic Image Description Generation:添加语言风格,例如幽默,

Unseen Objects Image Description Generation:

Diverse Image Description Generation:

Controllable Image Description Generation: control and select the objects in an image to generate descriptions. 

Video Description Generation

Global Video Description Generation: 

Dense Video Description Generation: 类似与Dense Image Description Generation

Movie Description Generation: movie clips are used as input

Visual Storytelling

Image Storytelling:

Video Storytelling:

Visual Question Answering

Image Question Answering

Video Question Answering

Visual Dialog

Image Dialog

Video Dialog

Visual Reasoning

Image Reasoning

Video Reasoning

Video Referring Expression

Image Referring Expression

Video Referring Expression

Visual Entailment

Image Entailment

Language-to-Vision Generation

Language-to-Image Generation
Sentence-level Language-to-Image Generation

Image Manipulation(图像编辑):生通过本文来引导图像的编辑, 同时保持其他文本不相关的区域,另一种方法是交互式的修改图像内容,还有一种是通过对话修改。

Fine-grain Image Generation(细粒度的图像生成):

Sequential Image Generation(序列图像生成):给定一段文字(多个句子),生成一系列的图像,就像故事的可视化,与image storytelling相反。

Language-to-Video Generation

需要更强的条件生成器,因为需要考虑时间维度

Vision-and-Language Navigation

Image and Language Navigation

Multimodal Machine Translation

Machine Translation with Image:将描述一副图像的源语言句子翻译成目标语言。

Multisource MMT:不同点:多种语言同时描述一副图像

Machine Translation with Video

Dataset

Image Description Generation

  • Flickr
深度多模态学习是一种研究方法,它将多个模态(例如语音、图像、视频等)的信息进行融合和学习。近年来,深度多模态学习取得了许多重要进展和趋势。 在多模态学习中,深度神经网络在特征提取和模态融合方面发挥了重要作用。通过深度网络的层次处理,可以有效地从原始模态数据中提取出高层次的语义特征。同时,多模态数据的融合也成为研究热点。不同模态之间的关联信息可以通过深度多模态网络进行学习和利用,提高了模型的性能。 近年来,深度多模态学习在不同领域取得了一系列重要的研究成果。在自然语言处理领域,多模态问答系统、图像字幕生成和视觉问答等任务得到了广泛研究。在计算机视觉领域,通过融合多个模态的信息,如图像和语音,可以实现更准确的物体识别和行为分析。在语音识别和语音合成领域,多模态学习也被用来提高语音处理的性能。 同时,一些趋势也值得关注。首先,多模态学习的应用正在不断扩展到更多领域,如医疗、机器人和智能交通等。其次,深度多模态学习和其他深度学习技术的结合也被广泛研究,以提高模型的性能和泛化能力。此外,深度多模态学习在大规模数据和计算资源方面的需求也值得关注。 总之,深度多模态学习是一个充满潜力和挑战的研究方向。随着技术的不断发展和应用需求的增加,我们有理由相信,深度多模态学习将在未来发挥更重要的作用。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>