AI圈巨震!微软论文声称ChatGPT是20B(200亿)参数量的模型?

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【计算机视觉和Transformer】交流群

在CVer微信公众号后台回复:CodeFusion,可以下载本论文pdf,学起来!

转载自:新智元 | 编辑:编辑部

【导读】微软最近一篇论文爆料,GPT-3.5的参数量只有20B,远远小于之前GPT-3公布175B。网友表示,ChatGPT能力似乎「配得上」这个体量?

GPT-3.5只有200亿参数?

今天,大模型圈都被微软论文中的一纸截图刷爆了,究竟是怎么回事?

就在前几天,微软发表了篇论文并挂在了arXiv上,该论文提出了一个参数量只有75M的小规模扩散模型——CodeFusion。

性能方面,7500万参数的CodeFusion在top-1准确率指标上,可以与最先进的350M-175B模型相媲美。

ae5d68fe0feb30a4215c82a0671751f7.png

论文地址:https://arxiv.org/abs/2310.17680

这篇论文的工作很有意义,但引起大家格外注意的却是——

作者在对比ChatGPT(gpt-3.5-turbo)时,标称的参数量竟然只有20B!

336e43afa728823b58c49757c5e42cde.png

扫码加入CVer知识星球可以最快学习到最新顶会顶刊上的论文idea和CV从入门到精通资料,以及最前沿项目和应用发论文强推!

4c7bbadd3a9576610608f92185cd601d.jpeg

在此之前,大家针对GPT-3.5参数量的猜测都是1750亿,这相当于是缩减了差不多十倍!

d209f3e7e879d4b3bb34326be8081fa0.png

根据这篇论文的爆料,网友还去维基百科上更新了GPT-3.5的介绍,直接把参数大小改成了20B。

消息一出,直接登上知乎热搜,网友们都炸了。

08a252a53c08df89dc9dac4bcf211c6f.png

有人表示,赶紧回头再把我之前模型蒸馏的博文拿出来复习复习 。

1627ebe0ebbb9ef7232c90ced6c46222.png

是「乌龙」还是「事实」?

网友的爆料贴一出,瞬间就引发了激烈的讨论。

目前,已经有超过68万人前来围观。

c39f0eb42892e143bed57cd6de463b4f.png

这位老哥表示,论文的几位作者也都在用推特,估计过不了多久就会亲自下场解释。

19889268e97345ea88b9952343291f45.png

而对于这个神秘的「20B」,网友们也是众说纷纭。

4ac4dcd7f501ae14e6710e7b2c81dbb0.png

有人猜测,这很可能是作者手误打错了。比如原本是120B,或者200B。

3620e249deca9376a612c1ad6053acfa.png

结合现实中的各项评测来看,确实有很多小模型能够取得和ChatGPT差不多的成绩,比如Mistral-7B。

889e79d80f466072eeabd3ee19006f8b.png

也许,这也是侧面证实了GPT-3.5体量真的不大。

94876f777975752a383e5d67865ee173.png

很多网友也认为20B的参数可能是准确的,纷纷发出感叹:

「这也太难以想象了!Falcon-180B和Llama2-70B,竟然都无法击败这款20B的模型。」

ac3a8137b752cdb4157336cb54a14a7e.png

也有网友认为,gpt-3.5-turbo是精炼版的gpt-3.5。

而这次参数的「泄露」,正好从侧面印证了那些关于gpt-3.5-turbo表现不如旧版gpt-3.5的传言。

077eae0f8138e9fd72130c6ae71d0dcd.png

不过,根据OpenAI的官方文档,除了已经不再使用的text-davinci和code-davinci,GPT-3.5家族全员都是基于gpt-3.5-turbo构成的。

ecbcedce098119e41e2978abfe06fea4.png

b8422183b2aac6f14e4aa5658ad91f5f.png

8b2f527722ffc356225edd12a7573e5b.png

微软发布CodeFusion

而爆出GPT3.5只有20B参数的微软论文,是想介绍一个用于代码生成的扩散模型。

研究人员针对Bash、Python和Microsoft Excel条件格式(CF)规则的自然语言生成代码的任务来评估这个模型——CodeFusion。

实验表明,CodeFusion(只有75M参数)在top-1精度方面与最先进的LLM(350M-175B参数)相当,并且在top-3和top-5精度方面性能和参数比非常优秀。

5ec2f1787f91fcbbf3e21122916fadf7.png

模型架构

CODEFUSION用于代码生成任务,它的训练分为两个阶段,第一阶段是无监督预训练,第二阶段是有监督微调。

5a3348d848fe35d74b25cd0a7f695d8d.png

在第一阶段,CODEFUSION使用未标记的代码片段来训练降噪器和解码器。它还使用可训练的嵌入层L,将代码片段嵌入到连续空间中。

在第二阶段,CODEFUSION进行有监督的微调,使用来自文本-代码对数据。在这个阶段,编码器、降噪器和解码器都会得到调整,以更好地执行任务。

此外,CODEFUSION还借鉴了之前有关文本扩散的研究成果,将来自解码器的隐藏表示D融合到模型中。这是为了改进模型的性能。在训练过程中,在不同step中,模型引入一些噪声,然后计算损失函数,以确保生成的代码片段更符合预期的标准。

总之,CODEFUSION是一个执行代码生成工作的小模型,通过两个阶段的训练和噪声引入来不断提升其性能。这个模型的灵感来自于文本扩散的研究,并通过融合解码器的隐藏表示来改进损失函数,以更好地生成高质量的代码片段。

扫码加入CVer知识星球可以最快学习到最新顶会顶刊上的论文idea和CV从入门到精通资料,以及最前沿项目和应用发论文强推!

2d3996c5b451ba59ec94d3f0947328cd.jpeg

评估结果

下表总结了CODEFUSION模型与各个基线模型在top-1、top-3和top-5设置下的性能表现。

在top-1中,CODEFUSION的性能与自回归模型相媲美,甚至在某些情况下表现更出色,尤其是在Python任务中,只有GPT-3(175B)的性能稍微优于CODEFUSION(75M)。然而,在top-3和top-5方面,CODEFUSION明显优于所有基线模型。

5fe2002b7df2a56ef31f17256ade75d2.png

表下表展示了CODEFUSION和自回归模型(包括T5、CodeT5、StarCoder、CodeGen、GPT-3)在各项基准任务上的平均多样性结果,考察了每个模型的前5代生成结果。

相对于自回归模型,CODEFUSION生成更加多样化的结果,表现更出色。

ecbd5a68e66badf5c66bde8490b92e22.png

在消融实验中,作者停止了去噪过程,并生成了在时间步t∈[0, T]范围内的当前状态的代码片段。利用归一化字符串编辑距离来衡量每个时间步长(每100步为一个增量)所获得的结果。

这一方法有助于总结和展示CODEFUSION模型的逐步进展,如下图所示。

423de19ab170e5ab430c9cf50ace2af2.png

说了这么多,GPT-3.5的参数量到底是多少?GPT-4与GPT-3.5在技术和其他方面有着什么样的联系?

GPT-3.5是一个个小专家模型的集成还是一个通才模型?是通过更大模型的蒸馏还是更大数据训练?

这些问题的答案只能等到真正开源的时候才能揭晓了。

参考资料:

https://arxiv.org/abs/2310.17680

https://twitter.com/felix_red_panda/status/1718916631512949248

在CVer微信公众号后台回复:CodeFusion,可以下载本论文pdf,学起来!

点击进入—>【计算机视觉和Transformer】交流群

ICCV / CVPR 2023论文和代码下载

 
 

后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:ICCV2023,即可下载ICCV 2023论文和代码开源的论文合集
计算机视觉和Transformer交流群成立
扫描下方二维码,或者添加微信:CVer444,即可添加CVer小助手微信,便可申请加入CVer-计算机视觉或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF等。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

 
 
▲扫码或加微信号: CVer444,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!

▲扫码加入星球学习
 
 
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看dec3654eef062767bbd092c6b0475d22.gif
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值