Variational Calculus

1. What is variational calculus?
To find a stationary function of a functional I [ f ] I[f] I[f] (function of functions), solve (usually differential) equation for stationary function f ( x ) f(x) f(x).
(e.x.) We have two points A ( x 1 , y 1 ) , B ( x 2 , y 2 ) A(x_1, y_1), B(x_2, y_2) A(x1,y1),B(x2,y2), find a path f ( x ) f(x) f(x) such that distance between A A A and B B B is minimized.
I = ∫ A B d S = ∫ A B d x 2 + d y 2 = ∫ x 1 x 2 1 + ( d y d x ) 2 d x \begin{aligned} I &= \int_{A}^{B} dS \\ &= \int_{A}^{B} \sqrt{dx^2 + dy^2} \\ &= \int_{x_1}^{x_2} \sqrt{1 + (\frac{dy}{dx})^2} dx \end{aligned} I=ABdS=ABdx2+dy2 =x1x21+(dxdy)2 dx

(Brachistochrone Problem) Given v ( x , y ) v(x,y) v(x,y) of a particle, find a path y = f ( x ) y=f(x) y=f(x) such that the time T T T taken by the particle is minimized.
T = ∫ x 1 x 2 1 + ( d y / d x ) 2 v ( x , y ) d x T = \int_{x_1}^{x_2} \frac{\sqrt{1 + (dy / dx)^2}}{v(x,y)} dx T=x1x2v(x,y)1+(dy/dx)2 dx

In general, calculus of variations seeks to find y = f ( x ) y=f(x) y=f(x) such that this integral:
I ( f ) = ∫ x 1 x 2 F ( x , y , d y d x ) d x I(f) = \int_{x_1}^{x_2} F(x,y,\frac{dy}{dx}) dx I(f)=x1x2F(x,y,dxdy)dx
is stationary.

2. Euler-Lagrange Equations

Find y = f ( x ) y=f(x) y=f(x) such that the functional I = ∫ x 1 x 2 F ( x , y , y ′ ) d x I = \int_{x_1} ^{x_2} F(x,y,y')dx I=x1x2F(x,y,y)dx is stationary. Boundary conditions: y ( x 1 ) = y 1 , y ( x 2 ) = y 2 y(x_1) = y_1, y(x_2)=y_2 y(x1)=y1,y(x2)=y2

Derivation: Suppose y ( x ) y(x) y(x) (a.k.a. Extremal) makes I I I stationary and satisfies the above boundary conditions.

  • (Implicit: all the functions talked below has 2 n d 2^{nd} 2nd derivative)
  • Introduce a function η ( x ) \eta(x) η(x), which means the small change applied to y ( x ) y(x) y(x), the only condition on η ( ⋅ ) \eta(\cdot) η() is η ( x 1 ) = η ( x 2 ) = 0 \eta(x_1) = \eta(x_2) = 0 η(x1)=η(x2)=0 to satisfy the boundary condition. At other locations between ( x 1 , x 2 ) (x_1, x_2) (x1,x2), η ( ⋅ ) \eta(\cdot) η() is arbitrary function
  • Define y ˉ ( x ) = y ( x ) + ε η ( x ) \bar{y}(x) = y(x) + \varepsilon \eta(x) yˉ(x)=y(x)+εη(x)
  • Then the problems was converted to
    I ( ε ) = ∫ x 1 x 2 F ( x , y ˉ , y ′ ˉ ) d x I(\varepsilon) = \int_{x_1}^{x_2} F(x,\bar{y},\bar{y'}) dx I(ε)=x1x2F(x,yˉ,yˉ)dx
    that’s just a regular single variable integration, set d I d ε ∣ ε = 0 = 0 \frac{dI}{d\varepsilon} |_{\varepsilon=0} = 0 dεdIε=0=0
    Why ε = 0 \varepsilon=0 ε=0? Because only when ε = 0 → y ˉ = y \varepsilon = 0 \rightarrow \bar{y} = y ε=0yˉ=y, which is the extremal, can I ( ε ) I(\varepsilon) I(ε) get to stationary point.
  • Now we have
    d d ε ∣ ε = 0 ∫ x 1 x 2 F ( x , y ˉ , y ˉ ′ ) d x = 0 ∫ x 1 x 2 ∂ ∂ ε F ( x , y ˉ , y ˉ ′ ) ∣ ε = 0 d x = 0 ∫ x 1 x 2 [ ∂ F ∂ y ˉ ∂ y ˉ ∂ ε + ∂ F ∂ y ˉ ′ ∂ y ˉ ′ ∂ ε ] ∣ ε = 0 d x = 0 \begin{aligned} \frac{d}{d\varepsilon} |_{\varepsilon=0} \int_{x_1}^{x_2} F(x,\bar{y},\bar{y}')dx &= 0 \\ \int_{x_1}^{x_2} \frac{\partial}{\partial \varepsilon} F(x,\bar{y},\bar{y}')|_{\varepsilon=0} dx &= 0 \\ \int_{x_1}^{x_2} [\frac{\partial F}{\partial \bar{y}} \frac{\partial \bar{y}}{\partial \varepsilon} + \frac{\partial F}{\partial \bar{y}'} \frac{\partial \bar{y}'}{\partial \varepsilon}] |_{\varepsilon = 0} dx &= 0 \end{aligned} dεdε=0x1x2F(x,yˉ,yˉ)dxx1x2εF(x,yˉ,yˉ)ε=0dxx1x2[yˉFεyˉ+yˉFεyˉ]ε=0dx=0=0=0

Because
∂ y ˉ ∂ ε = η \frac{\partial \bar{y}}{\partial \varepsilon} = \eta εyˉ=η ∂ y ˉ ′ ∂ ε = η ′ \frac{\partial \bar{y}'}{\partial \varepsilon} = \eta' εyˉ=η

We can have
∫ x 1 x 2 [ ∂ F ∂ y ˉ η + ∂ F ∂ y ˉ ′ η ′ ] ∣ ε = 0 d x = 0 \begin{aligned} \int_{x_1}^{x_2} [\frac{\partial F}{\partial \bar{y}} \eta + \frac{\partial F}{\partial \bar{y}'} \eta'] |_{\varepsilon = 0} dx &= 0 \end{aligned} x1x2[yˉFη+yˉFη]ε=0dx=0

Because
∫ x 1 x 2 ∂ F ∂ y ˉ ′ η ′ d x set: u = ∂ F ∂ y ˉ ′ , d v = η ′ d u = d d x ( ∂ F ∂ y ˉ ′ ) , v = η ∫ u d v = u v − ∫ v d u = ∂ F ∂ y ˉ ′ ∫ x 1 x 2 η ′ d x − ∫ x 1 x 2 ( ∫ η ′ ) d d x [ ∂ F ∂ y ˉ ′ ] d x = ∂ F ∂ y ˉ ′ η ∣ x 1 x 2 − ∫ x 1 x 2 η d d x [ ∂ F ∂ y ˉ ′ ] d x = − ∫ x 1 x 2 η d d x [ ∂ F ∂ y ˉ ′ ] d x \begin{aligned} &\int_{x_1}^{x_2} \frac{\partial F}{\partial \bar{y}'} \eta' dx \\ \text{set:} & \\ &u=\frac{\partial F}{\partial \bar{y}'}, dv = \eta'\\ &du = \frac{d}{dx}(\frac{\partial F}{\partial \bar{y}'}), v =\eta \\ & \int udv = uv - \int v du \\ = &\frac{\partial F}{\partial \bar{y}'} \int_{x_1}^{x_2} \eta' dx - \int_{x_1}^{x_2} (\int \eta') \frac{d}{dx}[\frac{\partial F}{\partial \bar{y}'}]dx \\ = & \frac{\partial F}{\partial \bar{y}'} \eta |^{x_2}_{x_1} - \int_{x_1}^{x_2} \eta \frac{d}{dx}[\frac{\partial F}{\partial \bar{y}'}]dx \\ = & - \int_{x_1}^{x_2} \eta \frac{d}{dx}[\frac{\partial F}{\partial \bar{y}'}]dx \\ \end{aligned} set:===x1x2yˉFηdxu=yˉF,dv=ηdu=dxd(yˉF),v=ηudv=uvvduyˉFx1x2ηdxx1x2(η)dxd[yˉF]dxyˉFηx1x2x1x2ηdxd[yˉF]dxx1x2ηdxd[yˉF]dx

Due to y = y ˉ y = \bar{y} y=yˉ when ε = 0 \varepsilon = 0 ε=0, we end up with
d I d ε = ∫ x 1 x 2 [ ∂ F ∂ y ˉ − d d x [ ∂ F ∂ y ˉ ′ ] ] η d x = ∫ x 1 x 2 [ ∂ F ∂ y − d d x [ ∂ F ∂ y ′ ] ] η d x = 0 ⟶ ∂ F ∂ y − d d x [ ∂ F ∂ y ′ ] = 0 \begin{aligned} \frac{dI}{d\varepsilon} &= \int_{x_1}^{x_2} [ \frac{\partial F}{\partial \bar{y}} - \frac{d}{dx}[\frac{\partial F}{\partial \bar{y}'}] ] \eta dx \\ &= \int_{x_1}^{x_2} [ \frac{\partial F}{\partial y} - \frac{d}{dx}[\frac{\partial F}{\partial y'}] ] \eta dx \\ &= 0 \\ \longrightarrow \frac{\partial F}{\partial y} - \frac{d}{dx} [\frac{\partial F}{\partial y'}] &= 0 \end{aligned} dεdIyFdxd[yF]=x1x2[yˉFdxd[yˉF]]ηdx=x1x2[yFdxd[yF]]ηdx=0=0

Remark: Euler-Lagrange Equation is a necessary condition rather than a sufficient one. It doesn’t tell you whether it’s maximum or minimum.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值