Calculus Revisited: Complex Variables and Differential Equations

1. The Complex Numbers

1. Why is complex number useful?

y ′ ′ ( t ) + y ( t ) = 0 y''(t) + y(t) = 0 y(t)+y(t)=0

can mean the acceleration of an object plus the displacement of an object equal zero.
but then if we set y ( t ) = e r t y(t) = e^{rt} y(t)=ert, we then have

r 2 + 1 = 0 r^2 + 1 = 0 r2+1=0

which means introduction of complex number is necessary.
We then have solution
y = e ± i t → { y = e i t y ′ = i t e i t y ′ ′ = − t 2 e i t y = e^{\pm it} \rightarrow \begin{cases} y = e^{it} \\ y' = it e^{it} \\ y'' = -t^2 e^{it} \end{cases} y=e±ity=eity=iteity=t2eit

2. Terminologies of complex number x + i y x+iy x+iy?

  • Argand Diagram: the plane with real axis and imaginary axis
  • magnitude: x 2 + y 2 \sqrt{x^2 + y^2} x2+y2
  • argument: θ = arctan ⁡ y x \theta = \arctan{\frac{y}{x}} θ=arctanxy

3. Prove ( r 1 , θ 1 ) ( r 2 , θ 2 ) = ( r 1 r 2 , θ 1 + θ 2 ) (r_1, \theta_1)(r_2, \theta_2) = (r_1 r_2, \theta_1 + \theta_2) (r1,θ1)(r2,θ2)=(r1r2,θ1+θ2)
( r 1 , θ 1 ) ( r 2 , θ 2 ) = ( r 1 cos ⁡ θ 1 + i r 1 sin ⁡ θ 1 ) ( r 2 cos ⁡ θ 2 + i r 2 sin ⁡ θ 2 ) = r 1 r 2 cos ⁡ θ 1 cos ⁡ θ 2 − r 1 r 2 sin ⁡ θ 1 sin ⁡ θ 2 + i r 1 r 2 ( cos ⁡ θ 1 sin ⁡ θ 2 + cos ⁡ θ 2 sin ⁡ θ 1 ) = r 1 r 2 cos ⁡ ( θ 1 + θ 2 ) + i r 1 r 2 sin ⁡ ( θ 1 + θ 2 ) = ( r 1 r 2 , θ 1 + θ 2 ) \begin{aligned} (r_1, \theta_1)(r_2, \theta_2) &= (r_1 \cos\theta_1 + i r_1\sin\theta_1) (r_2 \cos\theta_2 + i r_2\sin\theta_2) \\ &= r_1r_2 \cos \theta_1\cos\theta_2 - r_1r_2 \sin\theta_1\sin\theta_2 +ir_1r_2(\cos\theta_1\sin\theta_2 + \cos\theta_2\sin\theta_1) \\ &=r_1r_2 \cos(\theta_1 + \theta_2) +ir_1r_2\sin(\theta_1+\theta_2)\\ &=(r_1r_2,\theta_1+\theta_2) \end{aligned} (r1,θ1)(r2,θ2)=(r1cosθ1+ir1sinθ1)(r2cosθ2+ir2sinθ2)=r1r2cosθ1cosθ2r1r2sinθ1sinθ2+ir1r2(cosθ1sinθ2+cosθ2sinθ1)=r1r2cos(θ1+θ2)+ir1r2sin(θ1+θ2)=(r1r2,θ1+θ2)

In essence, it’s equivalent to r 1 e i θ 1 r 2 e i θ 2 = r 1 r 2 e i ( θ 1 + θ 2 ) r_1e^{i\theta_1} r_2e^{i\theta_2}=r_1r_2e^{i(\theta_1+\theta_2)} r1eiθ1r2eiθ2=r1r2ei(θ1+θ2)
So any number n n n times e i θ e^{i\theta} eiθ means rotate the point of that number with angle θ \theta θ.

4. What is De Moivre’s Theorem?
( cos ⁡ θ + i sin ⁡ θ ) n = cos ⁡ ( n θ ) + i sin ⁡ ( n θ ) (\cos\theta + i\sin\theta)^n = \cos (n\theta) + i\sin(n\theta) (cosθ+isinθ)n=cos(nθ)+isin(nθ)

5. (ex) How to compute i 6 \sqrt[6]{i} 6i ?
i = e i ( π 2 + 2 k π ) i = e^{i(\frac{\pi}{2}+ 2k\pi)} i=ei(2π+2kπ)
i 6 = 1 6 e i ( π 2 + 2 k π ) / 6 = e i ( π 12 + k π 3 ) \sqrt[6]{i} = \sqrt[6]{1} e^{i(\frac{\pi}{2} + 2k\pi )/6} = e^{i(\frac{\pi}{12} + \frac{k\pi}{3})} 6i =61 ei(2π+2kπ)/6=ei(12π+3kπ)

Remark: Complex numbers are closed with respect to extracting roots.
While the real numbers don’t, like − 1 \sqrt{-1} 1 .
Which means any polynomials with complex coefficients have complex roots.

2. Functions of complex Variable

1. Definition of function of complex variables?
Use a machine f f f to map an input x + i y x + iy x+iy represented by z = ( x , y ) z=(x, y) z=(x,y) to output w = ( u , v ) w=(u,v) w=(u,v)
For example, f ( z ) = z 2 = ( x + i y ) 2 f(z) = z^2 = (x+iy)^2 f(z)=z2=(x+iy)2, so f ( x , y ) = ( x 2 − y 2 , 2 x y ) f(x,y) = (x^2 - y^2, 2xy) f(x,y)=(x2y2,2xy).

2. If we see z z z as a vector, would d w d z \frac{dw}{dz} dzdw is a constant value?
Yes, which means lim ⁡ Δ z → 0 Δ u + i Δ v Δ x + i Δ y = Constant \lim_{\Delta z\rightarrow 0} \frac{\Delta u + i \Delta v}{\Delta x + i \Delta y}=\text{Constant} limΔz0Δx+iΔyΔu+iΔv=Constant

case 1: Δ y = 0 \Delta y=0 Δy=0
which means Δ x → 0 \Delta x\rightarrow 0 Δx0 horizontally
f ′ ( z 0 ) = lim ⁡ Δ z → 0 [ Δ u Δ x + i Δ v Δ x ] = ∂ u ∂ x + i ∂ v ∂ x ∣ z 0 = ( x 0 , y 0 ) \begin{aligned} f'(z_0) &= \lim_{\Delta z \rightarrow 0} [\frac{\Delta u }{\Delta x} + i \frac{\Delta v}{\Delta x}] \\ &= \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}|_{z_0 = (x_0,y_0)} \end{aligned} f(z0)=Δz0lim[ΔxΔu+iΔxΔv]=xu+ixvz0=(x0,y0)

case 2: Δ x = 0 \Delta x = 0 Δx=0

f ′ ( z 0 ) = lim ⁡ Δ z → 0 [ Δ u i Δ y + Δ v Δ y ] = − i ∂ u ∂ y + ∂ v ∂ y ∣ z 0 = ( x 0 , y 0 ) \begin{aligned} f'(z_0) &= \lim_{\Delta z \rightarrow 0} [\frac{\Delta u }{i\Delta y} + \frac{\Delta v}{\Delta y}] \\ &= -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}|_{z_0 = (x_0,y_0)} \end{aligned} f(z0)=Δz0lim[iΔyΔu+ΔyΔv]=iyu+yvz0=(x0,y0)

Conclusion: To ensure the f ′ ( z 0 ) f'(z_0) f(z0) has the same dirivative along x x x and y y y directions, we need to guarantee case 1 and case 2 has the same result. Which leads to
{ u x = v y u y = − v x \begin{cases} u_x = v_y\\ u_y = -v_x \end{cases} {ux=vyuy=vx

Cauchy Riemann Conditions
case 3: If f ( x , y ) = u ( x , y ) + i v ( x , y ) f(x,y) =u(x,y)+iv(x,y) f(x,y)=u(x,y)+iv(x,y) is differentiable (analytic function)
then u x = v y , u y = − v x u_x = v_y, u_y = -v_x ux=vy,uy=vx, and vice versa.

(EX) f ( z ) = ( x + i y ) 2 = ( x 2 − y 2 ) + i ( 2 x y ) f(z) = (x+iy)^2 = (x^2 - y^2) + i(2xy) f(z)=(x+iy)2=(x2y2)+i(2xy)

Solution: u ( x , y ) = ( x 2 − y 2 ) u(x,y) = (x^2 - y^2) u(x,y)=(x2y2), v ( x , y ) = 2 x y v(x,y) = 2xy v(x,y)=2xy.
Then we have u x = 2 x = v y u_x = 2x = v_y ux=2x=vy, u y = − 2 y = − v x . u_y = -2y = -v_x. uy=2y=vx.

Also ( x 0 + Δ x ) 2 − x 0 2 Δ x = 2 x 0 \frac{(x_0+\Delta x)^2 - x_0^2}{\Delta x} = 2x_0 Δx(x0+Δx)2x02=2x0 also proves its truth.

(EX2) f ( z ) = z ˉ = x − i y f(z) = \bar{z} = x -iy f(z)=zˉ=xiy
Solution: u x = 1 , v y = − 1 u_x=1, v_y = -1 ux=1,vy=1. They are not equal which means function is not differentiable.

3. How to connect differentiability with Laplace’s Equation?
Let’s say we have u + i v u+iv u+iv is differentiable.
Then u x = v y , u y = − v x ⟶ u x x = v y x , u y y = − v x y u_x = v_y, u_y = -v_x \longrightarrow u_{xx} = v_{yx}, u_{yy} = - v_{xy} ux=vy,uy=vxuxx=vyx,uyy=vxy.
So we have u x x + u y y = 0 u_{xx} + u_{yy} = 0 uxx+uyy=0
And the same can be achieved on imaginary parts.

Then we can say, if u + i v u+iv u+iv is differentiable, then both real and imaginary parts satisfy Laplace’s equations.

3. Conformal Mapping

1. What is locally invertible for a complex mapping?

Solution: If det ⁡ ∣ ∂ ( u , v ) ∂ ( x , y ) ∣ = det ⁡ [ u x u y v x v y ] ≠ 0 \det|\frac{\partial (u,v)}{\partial(x,y)}| =\det \begin{bmatrix} u_x & u_y\\ v_x & v_y \\ \end{bmatrix} \neq 0 det(x,y)(u,v)=det[uxvxuyvy]̸=0 (This is Jacobian Matrix), then it’s locally invertible.

Also, remember if a complex mapping z = ( x , y ) ⟶ w ( u , v ) z=(x,y) \longrightarrow w(u,v) z=(x,y)w(u,v) is an analytic function, we have u x = v y , u y = − v x u_x = v_y, u_y = -v_x ux=vy,uy=vx.

Then det ⁡ ∣ ∂ ( u , v ) ∂ ( x , y ) ∣ = u x v y − u y v x = u x 2 + v x 2 = ∣ f ′ ( z ) ∣ 2 \det|\frac{\partial (u,v)}{\partial(x,y)}| = u_x v_y - u_yv_x = u_x^2 +v_x^2 = |f'(z)|^2 det(x,y)(u,v)=uxvyuyvx=ux2+vx2=f(z)2 cannot be equal to 0.

Conclusion: If function f = u + i v f=u+iv f=u+iv is analytic and f ′ ( x ) ≠ 0 f'(x) \neq 0 f(x)̸=0, then this function is invertible.

2. Sometimes a function f f f is invertible but not analytic, how to distinguish them?

Solution: We consider the functions f f f embody both properties as “nicer” functions and call them conformal mapping.

3. What is a conformal mapping?

Solution: An invertible mapping is called conformal if it preserves the angles.

The “usual” linear mappings are not conformal.

Key Point: If f = u + i v f=u+iv f=u+iv is analytic and f ′ ( z ) ≠ 0 f'(z) \neq 0 f(z)̸=0, then { u = u ( x , y ) v = v ( x , y ) \begin{cases} u = u(x, y) \\ v = v(x, y) \\ \end{cases} {u=u(x,y)v=v(x,y) is conformal.

(EX) Prove that if z ( x , y ) ⟶ w ( u , v ) z(x,y) \longrightarrow w(u, v) z(x,y)w(u,v) is analytic and a conformal mapping, then for z 0 → w 0 , z 1 → w 1 , z 2 → w 2 z_0 \rightarrow w_0, z_1 \rightarrow w_1, z_2 \rightarrow w_2 z0w0,z1w1,z2w2, we have z 2 − z 0 z 1 − z 0 = w 2 − w 0 w 1 − w 0 \frac{z_2 - z_0}{z_1 - z_0} = \frac{w_2 - w_0}{w_1 - w_0} z1z0z2z0=w1w0w2w0, i.e., Δ w 2 Δ w 1 = Δ z 2 Δ z 1 \frac{\Delta w_2}{\Delta w_1} = \frac{\Delta z_2}{\Delta z_1} Δw1Δw2=Δz1Δz2 or θ = φ \theta = \varphi θ=φ (angle preservation).

Solution: Because f ′ ( z 0 ) ≈ Δ w Δ z f'(z_0) \approx \frac{\Delta w}{\Delta z} f(z0)ΔzΔw and derivative of complex function is independent of direction (analytic), we can have Δ w 2 Δ z 2 ≈ Δ w 1 Δ z 1 ≈ f ′ ( z 0 ) ≠ 0 \frac{\Delta w_2}{\Delta z_2} \approx \frac{\Delta w_1}{\Delta z_1} \approx f'(z_0) \neq 0 Δz2Δw2Δz1Δw1f(z0)̸=0 (conformal), which leads to Δ w 2 Δ w 1 = Δ z 2 Δ z 1 \frac{\Delta w_2}{\Delta w_1} = \frac{\Delta z_2}{\Delta z_1} Δw1Δw2=Δz1Δz2, i.e. θ = φ \theta = \varphi θ=φ.

Remark: If f ′ ( z 0 ) = 0 f'(z_0) = 0 f(z0)=0, we can’t get Δ w 2 Δ w 1 = Δ z 2 Δ z 1 \frac{\Delta w_2}{\Delta w_1} = \frac{\Delta z_2}{\Delta z_1} Δw1Δw2=Δz1Δz2 from Δ w 2 Δ z 2 ≈ Δ w 1 Δ z 1 ≈ f ′ ( z 0 ) \frac{\Delta w_2}{\Delta z_2} \approx \frac{\Delta w_1}{\Delta z_1} \approx f'(z_0) Δz2Δw2Δz1Δw1f(z0).

Conformal maps and Laplace’s Equation

1. Then introduction of Conformal Maps.

Known: Region R R R enclosed by some curve C C C and we have a temperature distribution on C C C and R R R.
We already know temperature satisfy Laplace’s equation in region R R R. That’s called steady-sate condition. I.e. T x x + T y y = 0 T_{xx} + T_{yy} = 0 Txx+Tyy=0. Also T = T 0 ( x , y ) T=T_0(x,y) T=T0(x,y) on C C C.
Then we can get an unique function defined in region R R R.

We need a transform from ( x , y ) (x,y) (x,y) to ( u , v ) (u,v) (u,v) to get a better integrand. We do the integration and then map back to ( x , y ) (x,y) (x,y).
Note that, only analytic can not keep the statements like Laplace’s equation T x x + T y y = 0 T_{xx} + T_{yy} = 0 Txx+Tyy=0 still true after transformation.
That’s why we need conformal maps.

(Theorem)
If f : R → S f:R\rightarrow S f:RS where f = u + i v f=u+iv f=u+iv is analytic and f ′ ( z ) ≠ 0 f'(z) \neq 0 f(z)̸=0. Then Laplace’s equation T x x + T y y = 0 ⟷ T u u + T v v = 0 T_{xx} + T_{yy} = 0 \longleftrightarrow T_{uu} + T_{vv} = 0 Txx+Tyy=0Tuu+Tvv=0. I.e. a conformal map preserves Laplace’s equation.

Real Case:
Suppose Region R R R + curve C C C conformally maps to Region S S S and curve C ′ C' C. So we can trans form our problem T = T 0 ( x , y ) T= T_0(x,y) T=T0(x,y) in R R R to T = T 1 ( u , v ) T=T_1(u,v) T=T1(u,v) in S S S and solve it. Then plug { u = u ( x , y ) v = v ( x , y ) \begin{cases} u = u(x,y) \\ v = v(x,y) \end{cases} {u=u(x,y)v=v(x,y) back to T 1 ( u , v ) T_1(u,v) T1(u,v), so we can get T = T 0 ( x , y ) T=T_0(x,y) T=T0(x,y).

Proof:
Given { u = u ( x , y ) v = v ( x , y ) \begin{cases} u = u(x,y) \\ v = v(x,y) \end{cases} {u=u(x,y)v=v(x,y), assume u , v u,v u,v are continuously differentiable functions.

By chain rule:
T x = T u u x + T v v x T_x = T_u u_x + T_vv_x Tx=Tuux+Tvvx
So
T x x = ( T u u x + T v v x ) x = T u u x x + ( T u ) x u x + T v v x x + ( T v ) x v x = T u u x x + ( T u u u x + T u v v x ) u x + T v v x x + ( T v u u x + T v v v x ) v x = T u u x x + T u u u x 2 + T u v u x v x + T v v x x + T u v u x v x + T v v v x 2 \begin{aligned} T_{xx} &= (T_u u_x + T_vv_x)_x \\ &=T_u u_{xx} + (T_{u})_x u_x + T_{v} v_{xx} + (T_{v})_x v_x \\ &= T_u u_{xx} + (T_{uu} u_x + T_{uv}v_x) u_x + T_{v} v_{xx} + (T_{vu} u_x + T_{vv} v_x) v_x \\ &= T_u u_{xx} + T_{uu} u_x^2 + T_{uv}u_xv_x + T_{v} v_{xx} + T_{uv} u_x v_x + T_{vv} v_x^2 \\ \end{aligned} Txx=(Tuux+Tvvx)x=Tuuxx+(Tu)xux+Tvvxx+(Tv)xvx=Tuuxx+(Tuuux+Tuvvx)ux+Tvvxx+(Tvuux+Tvvvx)vx=Tuuxx+Tuuux2+Tuvuxvx+Tvvxx+Tuvuxvx+Tvvvx2

By symmetric:

T y y = ( T u u y + T v v y ) y = T u u y y + ( T u ) y u y + T v v y y + ( T v ) y v y = T u u y y + ( T u u u y + T u v v y ) u y + T v v y y + ( T v u u y + T v v v y ) v y = T u u y y + T u u u y 2 + T u v u y v y + T v v y y + T u v u y v y + T v v v y 2 \begin{aligned} T_{yy} &= (T_u u_y + T_vv_y)_y \\ &=T_u u_{yy} + (T_{u})_y u_y + T_{v} v_{yy} + (T_{v})_y v_y \\ &= T_u u_{yy} + (T_{uu} u_y + T_{uv}v_y) u_y + T_{v} v_{yy} + (T_{vu} u_y + T_{vv} v_y) v_y \\ &= T_u u_{yy} + T_{uu} u_y^2 + T_{uv}u_yv_y + T_{v} v_{yy} + T_{uv} u_y v_y + T_{vv} v_y^2 \\ \end{aligned} Tyy=(Tuuy+Tvvy)y=Tuuyy+(Tu)yuy+Tvvyy+(Tv)yvy=Tuuyy+(Tuuuy+Tuvvy)uy+Tvvyy+(Tvuuy+Tvvvy)vy=Tuuyy+Tuuuy2+Tuvuyvy+Tvvyy+Tuvuyvy+Tvvvy2

Add them up:
T x x + T y y = T u ( u x x + u y y ) + T v ( v x x + v y y ) + 2 T u v ( u x v x + u y v y ) + T u u ( u x 2 + u y 2 ) + T v v ( v x 2 + v y 2 ) \begin{aligned} T_{xx} + T_{yy} &= T_u (u_{xx} + u_{yy}) + T_{v}( v_{xx} + v_{yy}) + 2T_{uv}(u_x v_x + u_yv_y) + T_{uu}(u_x^2 + u_y^2) + T_{vv} (v_x^2 + v_y^2) \\ \end{aligned} Txx+Tyy=Tu(uxx+uyy)+Tv(vxx+vyy)+2Tuv(uxvx+uyvy)+Tuu(ux2+uy2)+Tvv(vx2+vy2)

If Cauchy-Riemann Conditions are satisfied (analytic), we have u x x + u y y = 0 , v x x + v y y = 0 u_{xx} + u_{yy} = 0, v_{xx} + v_{yy}=0 uxx+uyy=0,vxx+vyy=0.
Also, ∣ f ′ ∣ 2 = u x 2 + v x 2 = u x 2 + u y 2 = v x 2 + v y 2 |f'|^2 = u_x^2+v_x^2=u_x^2+u_y^2=v_x^2+v_y^2 f2=ux2+vx2=ux2+uy2=vx2+vy2
Meanwhile, u x v x + u y v y = v y v x − v x v y = 0 u_xv_x +u_yv_y = v_yv_x- v_xv_y = 0 uxvx+uyvy=vyvxvxvy=0
T x x + T y y = [ T u u + T v v ] ∣ f ′ ( z ) ∣ 2 T_{xx} + T_{yy} = [T_{uu} + T_{vv}]|f'(z)|^2 Txx+Tyy=[Tuu+Tvv]f(z)2

If f ′ ( z ) ≠ 0 f'(z) \ne 0 f(z)̸=0,
we then have
T x x + T y y = 0 ⟷ T u u + T v v = 0 T_{xx} + T_{yy} = 0 \longleftrightarrow T_{uu} + T_{vv} = 0 Txx+Tyy=0Tuu+Tvv=0

4. Sequences and Series

e x = ∑ n − 0 ∞ x n n ! e^x = \sum_{n-0}^{\infty} \frac{x^n}{n!} ex=n0n!xn

(Definition)
lim ⁡ n → ∞ a n = L \lim_{n\rightarrow \infty} a_n = L limnan=L means given ϵ &gt; 0 \epsilon &gt; 0 ϵ>0, there exists N N N, then n &gt; N ⟶ ∣ a n − L ∣ &lt; ϵ n &gt; N \longrightarrow |a_n -L| &lt; \epsilon n>NanL<ϵ.
In similar way, we may define ∑ n = 0 ∞ c n = lim ⁡ n → ∞ ( c 1 + . . . + c n ) \sum_{n=0}^{\infty} c_n = \lim_{n\rightarrow\infty} (c_1 + ...+ c_n) n=0cn=limn(c1+...+cn)

In particular, if S = { z : ∑ a n z n  converges } S = \{z:\sum a_nz^n \text{ converges}\} S={z:anzn converges}
then either

  1. S = { 0 } S= \{0\} S={0}
  1. S = C S = C S=C (all complex numbers).
  2. There exists R &gt; 0 R&gt;0 R>0 such that S = { z : ∣ z ∣ &lt; R } S =\{z: |z|&lt; R\} S={z:z<R}, and convergence is abosulte and uniform for ∣ z ∣ ≤ r &lt; R |z| \leq r &lt; R zr<R.

Definition of lim of complex numbers

even if a n a_n an and L L L are complex numbers, the definition still holds.

a n a_n an is any point in the disc with the origin of L L L with radius < ϵ \epsilon ϵ

What we mean lim here is that after a certain numbers any n &gt; N n&gt;N n>N, we have a n a_n an falls in the disc around L L L.

z = r e i θ = r e i ( θ + 2 π k ) log ⁡ z = log ⁡ r + i ( θ + 2 π k ) \begin{aligned} z &amp;= re^{i\theta} = r e^{i(\theta + 2\pi k)} \\ \log z &amp;= \log r + i(\theta + 2\pi k) \\ \end{aligned} zlogz=reiθ=rei(θ+2πk)=logr+i(θ+2πk)

log ⁡ z \log z logz is multi-valued, so we can say principal value is − π &lt; θ &lt; π -\pi &lt; \theta &lt; \pi π<θ<π

cosh ⁡ i x = e i x + e − i x 2 = cos ⁡ x \cosh ix = \frac{e^{ix} + e^{-ix}}{2} = \cos x coshix=2eix+eix=cosx

e z = e x + i y = e x e i y = e x ( cos ⁡ y + i sin ⁡ y ) = e x cos ⁡ y + i e x sin ⁡ y \begin{aligned} e^z &amp;= e^{x+iy} \\ &amp;= e^x e^{iy} \\ &amp;= e^x (\cos y + i \sin y) \\ &amp;= e^x \cos y + i e^x \sin y \\ \end{aligned} ez=ex+iy=exeiy=ex(cosy+isiny)=excosy+iexsiny

Then { u = e x cos ⁡ y v = e x s i n y \begin{cases} u = e^x \cos y\\ v = e^x siny \end{cases} {u=excosyv=exsiny is a conformal mapping.

Solution: Because the power series of e z e^z ez exists, the fact the power series exists means its derivative exists.

If we square both sides, we can get
u 2 + v 2 = e 2 y u^2 + v^2 = e^{2y} u2+v2=e2y

v u = tan ⁡ y \frac{v}{u} = \tan y uv=tany

Application:

1 1 − u = 1 + u + u 2 + . . . = ∑ 0 ∞ u n \frac{1}{1-u} = 1 + u + u^2 + ... = \sum_0^\infty u^n 1u1=1+u+u2+...=0un converges for ∣ u ∣ &lt; 1 |u|&lt; 1 u<1.

So 1 1 + x 2 = 1 − x 2 + x 4 − x 6 + . . + ∑ n = 0 ∞ ( − 1 ) n x 2 n \frac{1}{1 + x^2} = 1 - x^2 + x^4 - x^6 +.. + \sum_{n=0}^{\infty}(-1)^n x^{2n} 1+x21=1x2+x4x6+..+n=0(1)nx2n converges when ∣ x ∣ &lt; 1 |x| &lt; 1 x<1

Question: Why we need ∣ x ∣ &lt; 1 |x| &lt; 1 x<1? Nothing goes wrong with 1 1 + x 2 \frac{1}{1+x^2} 1+x21 apparently.

Solution: If we convert real-valued series to complex-valued series, look at ∑ n = 0 ∞ ( − 1 ) n z 2 n = 1 1 + z 2 = 1 ( z + i ) ( z − i ) \sum_{n=0}^{\infty} (-1)^n z^{2n} = \frac{1}{1+z^2} = \frac{1}{(z+i)(z-i)} n=0(1)nz2n=1+z21=(z+i)(zi)1

If z = ± i z=\plusmn i z=±i then obviously the equation doesn’t hold. Then go to Argand Diagram, if we have trouble on ( 0 , ± i ) (0, \plusmn i) (0,±i) all the points on the circle can’t be achieved. This include ( ± 1 , 0 ) (\plusmn 1, 0) (±1,0).

5. Integrating Complex Functions

Review:

∫ x 0 x 1 f ( x ) d x = lim ⁡ max ⁡ Δ x k → 0 ∑ k = 1 n f ( c k ∗ ) Δ x k = F ( x 1 ) − F ( x 0 ) \begin{aligned} \int_{x_0}^{x_1} f(x) dx &amp;= \lim_{\max \Delta x_k \rightarrow 0} \sum_{k=1}^{n}f(c_k^*)\Delta x_k \\ &amp;= F(x_1) - F(x_0) \end{aligned} x0x1f(x)dx=maxΔxk0limk=1nf(ck)Δxk=F(x1)F(x0)

∫ z 0 z 1 f ( z ) d z = lim ⁡ max ⁡ Δ z k → 0 ∑ k = 1 n f ( c k ∗ ) Δ z k \begin{aligned} \int_{z_0}^{z_1} f(z) dz &amp;= \lim_{\max \Delta z_k \rightarrow 0} \sum_{k=1}^{n}f(c_k^*)\Delta z_k \\ \end{aligned} z0z1f(z)dz=maxΔzk0limk=1nf(ck)Δzk

Now, we can find that unlike real case, where we do integration along x-axis. In xy-plane, we do integration along the curve C C C.

We constraint the curve C C C to be smooth.

z = x ( t ) + i y ( t ) , t 0 ≤ t ≤ t 1 z = x(t) + iy(t), t_0 \leq t \leq t_1 z=x(t)+iy(t),t0tt1

∫ z 0 z 1 f ( z ) d z = lim ⁡ max ⁡ Δ z k → 0 ∑ k = 1 n [ f ( c k ( t k ∗ ) ) Δ z k Δ t k ] Δ t k \int_{z_0}^{z_1} f(z) dz = \lim_{\max \Delta z_k \rightarrow 0} \sum_{k=1}^{n} [f(c_k(t_k^*))\frac{\Delta z_k}{\Delta t_k}] \Delta t_k z0z1f(z)dz=maxΔzk0limk=1n[f(ck(tk))ΔtkΔzk]Δtk

∫ z 0 z 1 f ( z ) d z = ∫ t 0 t 1 f ( z ( t ) ) z ′ ( t ) d t \int_{z_0}^{z_1} f(z) dz = \int_{t_0}^{t_1} f(z(t))z&#x27;(t) dt z0z1f(z)dz=t0t1f(z(t))z(t)dt

In terms of u u u and v v v, f ( z ) = u + i v f(z) = u+iv f(z)=u+iv, Δ z = Δ x + i Δ y \Delta z = \Delta x + i \Delta y Δz=Δx+iΔy.

This leads to
∫ z 0 z 1 f ( z ) d z = ∫ ( x 0 . y 0 ) ( x 1 , y 1 ) ( u + i v ) ( d x + i d y ) = ∫ ( x 0 , y 0 ) ( x 1 , y 1 ) ( u d x − v d y ) + i ∫ ( x 0 , y 0 ) ( x 1 , y 1 ) ( v d x + u d y ) \begin{aligned} \int_{z_0}^{z_1}f(z)dz &amp;= \int_{(x_0.y_0)}^{(x_1, y_1)} (u+iv)(dx + idy) \\ &amp;= \int_{(x_0, y_0)}^{(x_1, y_1)} (udx - vdy) + i \int_{(x_0, y_0)}^{(x_1, y_1)} (vdx+udy) \end{aligned} z0z1f(z)dz=(x0.y0)(x1,y1)(u+iv)(dx+idy)=(x0,y0)(x1,y1)(udxvdy)+i(x0,y0)(x1,y1)(vdx+udy)

If u + i v u+iv u+iv is analytic ⟶ u x = v y , u y = − v x ⟶ \longrightarrow u_x=v_y, u_y=-v_x \longrightarrow ux=vy,uy=vx both the real part and imaginary part are exact.

When the diffenrential is exact, the line integral was dependent only on the end points but not the path connected the end points. So if the integrand is exact, the line integral around the closed curve is zero.

So if f ( z ) f(z) f(z) is analytic, then ∫ z 0 z 1 f ( z ) d z = F ( z 1 ) − F ( z 0 ) \int_{z_0}^{z_1}f(z)dz = F(z_1) - F(z_0) z0z1f(z)dz=F(z1)F(z0) is independent of C C C and ∮ C f ( z ) d z = 0 \oint_C f(z)dz=0 Cf(z)dz=0 when f ( z ) f(z) f(z) is exact on and inside the curve.

EX: Compute ∮ C d z z \oint_C \frac{dz}{z} Czdz and C C C is a circle of radius r r r around the origin, to show that it may be zero when f ( z ) f(z) f(z) is not analytic.

Solution: Obviously, f ( z ) = 1 z f(z) = \frac{1}{z} f(z)=z1 is not analytic becuase it’s not differentiable at the origin ( 0 , 0 ) (0, 0) (0,0).

1. Apprach 01

∮ C d z z = ∮ C d x + i d y x + i y = ∮ C ( x − i y ) ( d x + i d y ) x 2 + y 2 = ∮ C x d x + y d y x 2 + y 2 + i ∮ C x d y − y d x x 2 + y 2 \begin{aligned} \oint_C \frac{dz}{z} &amp;= \oint_C \frac{dx+idy}{x+iy} \\ &amp;= \oint_C\frac{(x-iy)(dx+idy)}{x^2+y^2} \\ &amp;= \oint_C\frac{xdx + ydy}{x^2+y^2} + i\oint_C\frac{xdy - ydx}{x^2+y^2} \\ \end{aligned} Czdz=Cx+iydx+idy=Cx2+y2(xiy)(dx+idy)=Cx2+y2xdx+ydy+iCx2+y2xdyydx

Let x = r cos ⁡ θ , y = r sin ⁡ θ x = r\cos\theta, y = r\sin\theta x=rcosθ,y=rsinθ

∮ C d z z = 0 + i ∮ 0 2 π R 2 ( sin ⁡ 2 θ + cos ⁡ 2 θ ) R 2 d θ = 2 π i ≠ 0 \begin{aligned} \oint_C \frac{dz}{z} &amp;= 0 + i \oint_{0}^{2\pi} \frac{R^2(\sin^2\theta + \cos^2\theta)}{R^2} d\theta \\ &amp;= 2\pi i \neq 0 \end{aligned} Czdz=0+i02πR2R2(sin2θ+cos2θ)dθ=2πi̸=0

2. Approach 02

C : Z = R e i θ 0 ≤ θ ≤ 2 π C: Z = Re^{i\theta} \hspace{1cm} 0 \leq \theta \leq 2\pi C:Z=Reiθ0θ2π

d z d θ = i R e i θ ∮ C d z z = ∫ 0 2 π 1 z ( θ ) d z d θ d θ = ∮ 0 2 π i R e i θ R e i θ d θ = ∮ 0 2 π i d θ = 2 π i \begin{aligned} \frac{dz}{d\theta} &amp;= iRe^{i\theta} \\ \oint_C \frac{dz}{z} &amp;= \int_0^{2\pi} \frac{1}{z(\theta)}\frac{dz}{d\theta}d\theta \\ &amp;= \oint_{0}^{2\pi} \frac{iRe^{i\theta}}{Re^{i\theta}}d\theta \\ &amp;= \oint_{0}^{2\pi}i d\theta \\ &amp;= 2\pi i \end{aligned} dθdzCzdz=iReiθ=02πz(θ)1dθdzdθ=02πReiθiReiθdθ=02πidθ=2πi

Theorem: Let’s imagine two curves C 1 C_1 C1 and C 2 C_2 C2 and C 1 C_1 C1 is inside the region enclosed by C 2 C_2 C2. If f ( z ) f(z) f(z) is analytic on and between C 1 C_1 C1 and C 2 C_2 C2 then ∮ C 1 f ( z ) d z = ∮ C 2 f ( z ) d z \oint_{C_1}f(z)dz = \oint_{C_2} f(z)dz C1f(z)dz=C2f(z)dz.

Which means any closed curve C C C enclose origin has ∮ C d z z = 2 π i \oint_C\frac{dz}{z}=2\pi i Czdz=2πi.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值