学习笔记(1):Windows版YOLOv4目标检测实战:中国交通标志识别-目标检测-任务说明...

已标记关键词 清除标记
<span style="color:#E53333;"><strong>告知:需要学习YOLOv4进行TT100K数据集上中国交通标志识别的学员请前往</strong></span><br /><br /><span style="color:#E53333;"><strong>(1) Ubuntu系统《YOLOv4目标检测实战中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/29362</strong></span> <p> <span style="color:#E53333;"><strong>(2)《WindowsYOLOv4目标检测实战中国交通标志识别》</strong></span><span style="color:#E53333;"><strong>课程链接:https://edu.csdn.net/course/detail/29363</strong></span><span style="color:#E53333;"><strong></strong></span> </p> <br /> 在无人驾驶中,交通标志识别是一项重要的任务。本课程中的项目以<strong><span style="color:#E53333;">美国交通标志数据集LISA</span></strong>为训练对象,采用<strong><span style="color:#E53333;">YOLOv3</span></strong>目标检测方法实现实时交通标志识别。<br /><br /> 具体项目过程包括包括:安装Darknet、下载LISA交通标志数据集、数据集格式转换、修改配置文件、训练LISA数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。<br /><br /> YOLOv3基于深度学习,可以实时地进行端到端的目标检测,以速度快见长。本课程将手把手地教大家使用YOLOv3实现交通标志的多目标检测。本课程的YOLOv3使用Darknet,在Ubuntu系统上做项目演示。 Darknet是使用C语言实现的轻型开源深度学习框架,依赖少,可移植性好,值得深入学习和探究。<br /><br /> 除本课程《YOLOv3目标检测实战交通标志识别》外,本人推出了有关YOLOv3目标检测的系列课程,请持续关注该系列的其它课程视频,包括:<br /><br /> 《YOLOv3目标检测实战:训练自己的数据集》<br /><br /> 《YOLOv3目标检测:原理与源码解析》<br /><br /> 《YOLOv3目标检测:网络模型改进方法》<br /><br /> 另一门课程《YOLOv3目标检测实战:训练自己的数据集》主要是介绍如何训练自己标注的数据集。而本课程的区别主要在于学习对已标注数据集的格式转换,即把LISA数据集从csv格式转换成YOLOv3所需要的PASCAL VOC格式和YOLO格式。本课程提供数据集格式转换的Python代码。<br /><br /> 请大家关注以上课程,并选择学习。<br /><br /> 下图是使用YOLOv3进行交通标志识别的测试结果<br /><p> <br /></p> <p> <img alt="" src="https://img-bss.csdn.net/201905291412089927.jpg" /><img alt="" src="https://img-bss.csdn.net/201905291412336785.jpg" /><img alt="" src="https://img-bss.csdn.net/201905291412485752.jpg" /></p> <p> <img alt="" src="https://img-bss.csdn.net/201905291413012686.jpg" /></p>
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页