作者 / Clement Farabet, VP of Research, Google DeepMind; Tris Warkentin, Director, Google DeepMind
Gemma 开放模型系列是 Google 推动实用 AI 技术普惠大众的重要基石。上个月,Gemma 迎来了首个生日。回望过去一年,其成果斐然:全球下载量突破 1 亿,社区欣欣向荣,衍生模型超过 6 万个1。Gemma 生态的蓬勃发展,不断激发我们的创新热情。
🔗 Gemma 生态
https://ai.google.dev/gemma/gemmaverse
我们在全球推出 Gemma 3,一系列基于 Gemini 2.0 模型同源技术打造的轻量级、先进开放模型。它们是 Google 迄今为止在性能、可移植性和社会责任方面表现最出色的开放模型。Gemma 3 专为设备端高效运行而设计,让手机、笔记本或工作站都能轻松驾驭,助力开发者随心打造 AI 应用。Gemma 3 提供 1B、4B、12B 和 27B 等多种规格,适合不同的硬件和性能需求。
接下来,我们将深入剖析 Gemma 3 的强大之处,为你介绍全新的 ShieldGemma 2,并引导你融入日益壮大的 Gemma 生态。
Gemma 3 为开发者解锁更多创新可能
领先的单加速器模型:Gemma 3 以小巧的体积,实现顶尖的性能。它超越了 Llama-405B、DeepSeek-V3 和 o3-mini,在 LMArena 的初步人类偏好评估中名列前茅,可助力你在单 GPU 或 TPU 环境下,打造令人惊艳的用户体验。
140 种语言,全球畅行:打造能与你的用户无碍沟通的应用。Gemma 3 开箱即支持超过 35 种语言,并针对 140 多种语言进行了预训练。
强大的文本和视觉推理能力:轻松打造能深度解析图片、文本和短视频的应用,开启智能交互的无限潜能。2
更大上下文窗口,驾驭复杂任务:Gemma 3 支持 128k token 的上下文窗口,助力你的应用深度理解和处理大量信息。
支持函数调用,构建智能 AI 工作流:Gemma 3 支持函数调用和结构化输出,助你实现任务自动化,构建智能 "代理"。
量化模型,更快实现卓越性能:Gemma 3 提供官方量化版本,在保证精度的前提下,有效降低模型体积和计算资源消耗。
△ 此图展示了多款 AI 模型在 Chatbot Arena Elo 评分体系中的排名,分数 (顶部数值) 越高,代表用户偏好度越高。底部的圆点代表预估的 NVIDIA H1 00 GPU 需求量。Gemma 3 27B 模型表现优异,仅需单个 GPU 即可运行,而其他模型最多需要 32 个。
若想深入了解这些强大功能背后的技术细节,以及对我们所用的负责任开发方法的全面解读,请参阅 Gemma 3 技术报告。
🔗 技术细节
https://developers.googleblog.com/en/introducing-gemma3
🔗 Gemma 3 技术报告
https://goo.gle/Gemma3Report
以严格的安全规范,
负责任地打造 Gemma 3
我们坚信,开放模型必须经过严密的风险评估。我们的策略是在创新与安全之间取得平衡,并依据模型性能调整测试力度。Gemma 3 的研发过程融入了完善的数据治理,通过精细调校和严谨的基准测试,确保其与我们的安全准则高度契合。尽管对更强大模型的深入测试,往往能为我们评估较弱模型提供参考,但鉴于 Gemma 3 在 STEM 领域的显著提升,我们特别针对其在有害内容生成方面的潜在滥用风险,进行了专项评估。结果显示,该风险处于较低水平。
随着业界不断涌现更强大的模型,我们亟需共同探索与风险相匹配的安全策略。我们将持续学习,并不断优化开放模型的安全实践。
ShieldGemma 2:
图像应用的内置安全屏障
在 Gemma 3 发布之际,我们还同步推出了 ShieldGemma 2,一款基于 Gemma 3 架构的强大 4B 图像安全检测工具。ShieldGemma 2 提供开箱即用的图像安全解决方案,针对危险内容、色情内容和暴力内容三大类别,输出安全标签。开发者可根据自身需求和用户偏好,对 ShieldGemma 进行深度定制。ShieldGemma 2 秉承开放理念,赋予开发者充分的灵活性和掌控力,并依托 Gemma 3 架构的高效性能,推动负责任的 AI 开发。
🔗 ShieldGemma 2
https://developers.googleblog.com/en/safer-and-multimodal-responsible-ai-with-gemma/
与你熟悉的工具无缝集成
Gemma 3 和 ShieldGemma 2 能够无缝集成到你现有的工作流程中:
使用喜爱的工具进行开发:Gemma 3 和 ShieldGemma 2 全面支持 Hugging Face Transformers、Ollama、JAX、Keras、PyTorch、Google AI Edge、UnSloth、vLLM 和 Gemma.cpp,让你随心选择最适合项目需求的开发工具。
秒速上手,即刻开始试验:立即体验 Gemma 3,开启开发进程。你可以在 Google AI Studio 中尽情探索其强大功能,或通过 Kaggle 或 Hugging Face 下载模型。
个性定制,满足独特需求:Gemma 3 的代码库重构升级,提供高效微调和推理的实用方案。你可以在 Google Colab、Vertex AI,甚至游戏显卡等你偏好的平台上,对模型进行训练和适配。
灵活部署,方案随心选择:Gemma 3 支持多种部署方式,涵盖 Vertex AI、Cloud Run、Google GenAI API、本地环境及其他平台,让你根据应用和架构需求,自由选择最佳部署方案。
NVIDIA GPU 优化,尽享卓越性能:NVIDIA 直接对 Gemma 3 模型进行了深度优化,确保你在从 Jetson Nano 到最新 Blackwell 芯片的各类 GPU 上,都能获得最佳性能。Gemma 3 现已入驻 NVIDIA API Catalog,只需一次 API 调用,即可快速构建原型。
跨越多种硬件平台,加速 AI 开发进程:Gemma 3 不仅针对 Google Cloud TPU 做了深度优化,还通过开源 ROCm™ 堆栈与 AMD GPU 实现了集成。对于 CPU 环境,Gemma.cpp 提供了直接高效的解决方案。
🔗 JAX
https://gemma-llm.readthedocs.io/en/latest/
🔗 Google AI Edge
https://developers.googleblog.com/en/gemma-3-on-mobile-and-web-with-google-ai-edge
🔗 UnSloth
https://unsloth.ai/blog/gemma3
🔗 Gemma.cpp
https://github.com/google/gemma.cpp
🔗 Google AI Studio
https://aistudio.google.com/prompts/new_chat?model=gemma-3-27b-it
🔗 代码库重构升级
https://github.com/google-deepmind/gemma
🔗 Google Colab
https://colab.research.google.com/
🔗 Vertex AI
https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma3
🔗 NVIDIA API Catalog
https://build.nvidia.com/google/
↕️ 上下滑动查看更多注释链接
模型与工具构筑的 "Gemma 宇宙"
Gemma 生态是一个由社区共建的庞大体系,汇聚了众多 Gemma 模型与工具,为创新提供源源不断的动力。例如,AI Singapore 的 SEA-LION v3 致力于消除语言隔阂,促进东南亚地区的交流;INSAIT 的 BgGPT 是首款以保加利亚语为核心的大语言模型,充分展现了 Gemma 卓越的多语言能力;Nexa AI 的 OmniAudio 则揭示了设备端 AI 的无限潜力,将先进的音频处理能力带入人们的日常生活。
🔗 AI Singapore 的 SEA-LION v3
https://ai.google.dev/gemma/gemmaverse/sealion
🔗 INSAIT 的 BgGPT
https://ai.google.dev/gemma/gemmaverse/insait
🔗 Nexa AI 的 OmniAudio
https://ai.google.dev/gemma/gemmaverse/omniaudio
为助力学术研究的创新突破,我们正式启动了 Gemma 3 学术计划。学术研究人员可申请价值 1 万美元的 Google Cloud 抵用金,加速基于 Gemma 3 的研究进程。申请通道即日开启,持续四周。欢迎访问我们的网站提交申请。
🔗 我们的网站
https://ai.google.dev/gemma/
即刻开启 Gemma 3 探索之旅
秉承我们对普及优质 AI 的不懈追求,Gemma 3 应运而生,开启全新篇章。准备好探索 Gemma 3 的强大功能了吗?请参考以下入门指南:
去上手探索
通过 Google AI Studio,无需任何设置,即可在浏览器中直接体验全精度的 Gemma 3。
在 Google AI Studio 中获取 API 密钥,然后通过 Google GenAI SDK 轻松调用 Gemma 3。
🔗 Google AI Studio
https://aistudio.google.com/prompts/new_chat?model=gemma-3-27b-it
🔗 Google GenAI SDK
https://ai.google.dev/gemini-api/docs/sdks
定制和开发
从 Hugging Face、Ollama 或 Kaggle 下载 Gemma 3 模型。
利用 Hugging Face 的 Transformers 库,或使用你偏好的开发环境,轻松对模型进行微调和适配,使其满足你的独特需求。
🔗 Hugging Face
https://huggingface.co/blog/gemma3
🔗 Ollama
https://ollama.com/download
🔗 Kaggle
https://www.kaggle.com/models/google/gemma-3
部署和拓展
利用 Vertex AI,将你的 Gemma 3 定制成果大规模推向商业应用。
使用 Ollama,在 Cloud Run 上进行推理运算。
通过 NVIDIA API Catalog 上手使用 NVIDIA NIM 推理微服务。
🔗 Vertex AI
https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma3
🔗 Cloud Run
https://cloud.google.com/run/docs/tutorials/gpu-gemma-with-ollama
🔗 NVIDIA API Catalog
https://build.nvidia.com/search?q=gemma
欢迎持续关注 "Android 开发者" 微信公众号,及时了解更多开发技术和产品更新等资讯动态。
1 来源:https://blog.google/technology/developers/gemma-3/ 发布的全球数据
2 4B、12B 和 27B 模型支持视觉功能