AI领域的agent是什么意思?

文章介绍了HTTP请求头中的user-agent概念,如何影响网页呈现,并讨论了AIAgent的发展,如Deepmind的roboticagent和亚马逊的自动化工具。指出在大模型时代,LLM驱动的AIAgent将扮演重要角色,预示着ChatGPT之后的新应用可能方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 
 

点击上方关注 “终端研发部

设为“星标”,和你一起掌握更多数据库知识

首发于我的知乎:终端研发部

我先给大家普及一下HTTP请求头中user-agent

在浏览器中,我们可以通过调节UA,来获取不同板式的网页。UA(身份证)告诉服务器,我是nova9鸿蒙系统等一系列信息, 随之网站返回与屏幕尺寸、系统等相适应的一个网页。

User-Agent叫做用户代理,是HTTP协议中请求头中的一个字段值。通过该字段值可以告诉网站服务器用户使用的什么产品发送的http请求。该信息一般发送请求的产品名称、操作系统、版本号等信息。大家熟知的浏览器其实就是所谓的一种用户代理。

通过谷歌的chrome浏览器,我们可以看到user-agent字段值如下:

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; TencentTraveler 4.0)
43b5bff87d2b7673b9f5c6cd3e4c8495.jpeg

AI中的Agent

有人说:

Agent是能够感知自身所处环境、自我决策并采取行动的人工智能实体。

AI Agent((国内称作AI智能体)是一种能够感知环境、进行决策和执行动作的智能实体。不同于传统的AI,AI Agent 具备通过独立思考、调用工具去逐步完成给定目标的能力。

而在LLM到来之后,AI Agent就被定义为基于LLM驱动的Agent实现对通用问题的自动化处理。

24c7cb1f73daecc255808948d8af35b3.jpeg

一个精简的Agent决策流程,用函数表达式:

Agent:P(感知)—> P(规划)—>A(行动)

一个更完整的Agent,一定是与环境充分交互的,它包括两部分——一是Agent的部分,二是环境的部分。此刻的Agent就如同物理世界中的“人类”,物理世界就是人类的“外部环境”。

目前 AI AGENT划分为两大类:自主智能体,力图实现复杂流程自动化。于是,有人说:

大模型时代的AI AGENT = LLM(核心控制器,构建核心能力)+ 规划能力 + 记忆 + 工具!

举个例子

627e129b40040615b21a344d61c6374a.jpeg

AI Agent项目

谷歌Deepmind推出了robotic agent,利用机械臂自动执行各种工作;

222eb6ffced37b597fa8a46f32a00ba1.jpeg

亚马逊推出了Amazon Bedrock Agents,可以自动分解企业AI应用开发任务;

1246785ecee13730fbbb6f7b88a25c35.jpeg

AI独角兽Inflection也在开发私人AI助理,可以帮助你完成订酒店等私人任务;

4fe04148f096eea433e294c5a7601af0.jpeg

哥伦比亚大学最近也公布了用于科研的AI Agent项目GPT Researcher

138643dcf1ef4d18e5809fd7357ee72f.jpeg

所以,AI带来的优势是不可估量的,AI Agent项目也会越来越重要

我相信,Agent智能体是ChatGPT后下一个AI爆款应用!

cd65641c95b1ebcf435c77b5eb83fdc9.jpeg

回复 【idea激活】即可获得idea的激活方式

回复 【Java】获取java相关的视频教程和资料

回复 【SpringCloud】获取SpringCloud相关多的学习资料

回复 【python】获取全套0基础Python知识手册

回复 【2020】获取2020java相关面试题教程

回复 【加群】即可加入终端研发部相关的技术交流群

阅读更多

用 Spring 的 BeanUtils 前,建议你先了解这几个坑!

lazy-mock ,一个生成后端模拟数据的懒人工具

在华为鸿蒙 OS 上尝鲜,我的第一个“hello world”,起飞!

字节跳动一面:i++ 是线程安全的吗?

一条 SQL 引发的事故,同事直接被开除!!

太扎心!排查阿里云 ECS 的 CPU 居然达100%

一款vue编写的功能强大的swagger-ui,有点秀(附开源地址)

相信自己,没有做不到的,只有想不到的

在这里获得的不仅仅是技术!

926fceec62a0ed81cc17c1ce876d9c85.png

3528ab98c11d6c5b76fbc2543456f323.gif

喜欢就给个“在看cd522369b6f9868bbe654c4f5a51a8f5.gif 

### 定义 AI 领域中的 Agent 概念 #### 什么是AI AgentAI Agent 是指能够在特定环境中执行任务的智能实体。这类实体具备感知周围环境的能力,可以根据收集到的数据作出合理决策,并据此采取相应行动来实现预定目标[^1]。 #### 构成要素 - **感知**: 利用各种类型的输入源获取关于当前状况的知识。对于计算机网络而言,这可能涉及监控数据包传输情况或是审查服务器活动记录;而在医疗保健场景下,则可能是读取病人的生理参数或分析医学影像资料[^2]。 - **决策**: 基于已获得的情报评估形势并规划最优策略。此过程通常依赖复杂的算法和数学建模技术完成,在面对复杂问题时还可能会运用到机器学习方法提高准确性与效率。 - **行动**: 执行由决策阶段产生的指令集。例如在网络防护方面可以自动断开可疑连接防止攻击扩散;医疗服务中则能辅助医生制定个性化治疗方案提升患者康复几率。 #### 环境特性 为了更好地理解 Agents 的运作机制,还需要考虑其所处环境的特点: - 可观察性:即该空间内所有状态是否都能被完全掌握还是仅限于局部认知; - 动态程度:指的是事物随时间变化的速度有多快; - 单独或多主体共存:意味着只有一个独立操作者还是存在多个相互作用的对象共同参与其中[^3]。 ```python class AIAgent: def __init__(self, environment_type): self.environment = Environment(environment_type) def perceive(self): return self.environment.get_state() def decide(self, state_info): # Implement decision-making logic here based on the perceived information. pass def act(self, action_plan): self.environment.apply_action(action_plan) class Environment: def __init__(self, type_="static"): self.type = type_ def get_state(self): # Return current observable states of this environment. pass def apply_action(self, plan): # Apply actions to change or interact with the environment according to given plans. pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

androidstarjack

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值