andyL_05
码龄8年
关注
提问 私信
  • 博客:365,198
    社区:1
    动态:8
    365,207
    总访问量
  • 73
    原创
  • 594,061
    排名
  • 82
    粉丝
  • 0
    铁粉

个人简介:EE 计算机视觉 机器学习 深度学习 算法

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2016-11-02
博客简介:

andyL_05的博客

查看详细资料
个人成就
  • 获得347次点赞
  • 内容获得97次评论
  • 获得1,099次收藏
  • 代码片获得2,399次分享
创作历程
  • 4篇
    2022年
  • 9篇
    2021年
  • 50篇
    2020年
  • 9篇
    2019年
  • 1篇
    2018年
成就勋章
TA的专栏
  • 深度学习
    21篇
  • 计算机视觉
    15篇
  • 论文阅读
    8篇
  • LeetCode
    33篇
  • C++
    36篇
  • 算法与数据结构
    40篇
  • 那些奇奇怪怪的问题
    11篇
  • caffe
    1篇
  • Pytorch
    12篇
  • 点云
    1篇
  • 心得体会
    1篇
  • Windows
    2篇
  • 工具
    1篇
  • 剑指offer
    5篇
  • VSCode
    1篇
  • 数学
  • OpenCV
    1篇
  • 机器学习
    1篇
  • STL源码剖析
  • python
    4篇
  • Ubuntu
    4篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络tensorflowpytorch图像处理
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

论文笔记 - CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching. CVPR 2021

论文笔记。本文是2021年CVPR的一篇文章,针对双目立体匹配任务。文章数提出了一种级联+融合的costvolume构造和回归策略,从而获得了高精度、对数据高鲁棒性的立体匹配结果。本文的切入点主要针对立体匹配的鲁棒性,指出由于数据集之间的差异以及视差分布的差异,导致很多算法只能在特定数据集获得很好的结果,迁移性和泛化性不足,这也严重制约了很多算法模型在真实场景的应用。因此,本文提出了CFNet采用融合+级联的方式提升立体匹配算法的鲁棒性。...
原创
发布博客 2022.07.22 ·
1571 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

论文笔记 - RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

这篇博客是对论文RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching的阅读笔记。论文地址位于,代码已开源,位于:RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching本文是一篇将光流算法RAFT迁移至立体匹配领域的文章,基于光路估计网络RAFT,提出了多级卷积GRU实现立体匹配的代价传播。文章对RAFT进行优化,并得到了一个高精度
原创
发布博客 2022.05.14 ·
2987 阅读 ·
11 点赞 ·
1 评论 ·
23 收藏

LeetCode 第275场周赛

本次周赛题目比较简单,比赛链接位于这里No.1 检查是否每一行每一列都包含全部整数对一个大小为 n x n 的矩阵而言,如果其每一行和每一列都包含从 1 到 n 的 全部 整数(含 1 和 n),则认为该矩阵是一个 有效 矩阵。给你一个大小为 n x n 的整数矩阵 matrix ,请你判断矩阵是否为一个有效矩阵:如果是,返回 true ;否则,返回 false 。示例 1:输入:matrix = [[1,2,3],[3,1,2],[2,3,1]]输出:true解释:在此例中,n = 3 ,
原创
发布博客 2022.01.11 ·
896 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

LeetCode 第274场周赛

本次周赛是2022年的第一场周赛。题目链接位于这里No 1. 检查是否所有 A 都在 B 之前 显示英文描述User Accepted:1635User Tried:1773Total Accepted:1640Total Submissions:2009Difficulty:Easy给你一个 仅 由字符 ‘a’ 和 ‘b’ 组成的字符串 s 。如果字符串中 每个 ‘a’ 都出现在 每个 ‘b’ 之前,返回 true ;否则,返回 false 。示例 1:输入:s = “aaabbb”
原创
发布博客 2022.01.09 ·
661 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

LeetCode 第273场周赛

LeetCode 第273场周赛 解析这次周赛应该是2021年度的最后一场周赛了,下一场就到2022年了。这篇博客对本次周赛的题目做一个解析。题目链接位于这里No 1.反转两次的数字反转 一个整数意味着倒置它的所有位。例如,反转 2021 得到 1202 。反转 12300 得到 321 ,不保留前导零 。给你一个整数 num ,反转 num 得到 reversed1 ,接着反转 reversed1 得到 reversed2 。如果 reversed2 等于 num ,返回 true ;否则,返
原创
发布博客 2021.12.27 ·
441 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

LeetCode 第271场周赛

这篇文章小结一下271场周赛的题目和解析。这场比赛在这里No.1 环和杆总计有 n 个环,环的颜色可以是红、绿、蓝中的一种。这些环分布穿在 10 根编号为 0 到 9 的杆上。给你一个长度为 2n 的字符串 rings ,表示这 n 个环在杆上的分布。rings 中每两个字符形成一个 颜色位置对 ,用于描述每个环:第 i 对中的 第一个 字符表示第 i 个环的 颜色(‘R’、‘G’、‘B’)。第 i 对中的 第二个 字符表示第 i 个环的 位置,也就是位于哪根杆上(‘0’ 到 ‘9’)。例如,“
原创
发布博客 2021.12.12 ·
3992 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

LeetCode 第 267 场周赛

本文对267场周赛题目做一个小结。周赛题目链接在此No 1 买票需要的时间有 n 个人前来排队买票,其中第 0 人站在队伍 最前方 ,第 (n - 1) 人站在队伍 最后方 。给你一个下标从 0 开始的整数数组 tickets ,数组长度为 n ,其中第 i 人想要购买的票数为 tickets[i] 。每个人买票都需要用掉 恰好 1 秒 。一个人 一次只能买一张票 ,如果需要购买更多票,他必须走到 队尾 重新排队(瞬间 发生,不计时间)。如果一个人没有剩下需要买的票,那他将会 离开 队伍。返回位
原创
发布博客 2021.11.14 ·
5323 阅读 ·
2 点赞 ·
1 评论 ·
1 收藏

LeetCode 第264场周赛

本次周赛开幕雷击,题目难度并不高,但是第一题就很麻烦,一定程度上影响了参赛者的积极性。本文小结一下周赛题目。No 1 句子中的有效单词数句子仅由小写字母(‘a’ 到 ‘z’)、数字(‘0’ 到 ‘9’)、连字符(’-’)、标点符号(’!’、’.’ 和 ‘,’)以及空格(’ ')组成。每个句子可以根据空格分解成 一个或者多个 token ,这些 token 之间由一个或者多个空格 ’ ’ 分隔。如果一个 token 同时满足下述条件,则认为这个 token 是一个有效单词:仅由小写字母、连字符和/
原创
发布博客 2021.10.24 ·
2718 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

论文笔记 - Omnidirectional stereo depth estimation based on spherical deep network

论文笔记 Omnidirectional stereo depth estimation based on spherical deep network本文是2021 Image and Vision Computing上的一篇文章。IVC算是领域内认可度较高的期刊之一。本文针对双目全景深度估计,提出了基于球面卷积的级联网络,将全景图的平面投影转换到球面表示,获取了高精度的全景深度图。......
原创
发布博客 2021.09.15 ·
1280 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

训练过程中Loss突然变为NaN的可能原因与解决

训练过程中Loss突然变为NaN的可能原因与解决深度学习训练过程中,我们依赖模型当前参数训练得到的loss,根据所选择的优化策略,如Adam、SGD等得到参数步进调整值,对参数进行不断的调整,直到模型达到我们的预期。但在实际训练过程中,有时候会发现loss变为NaN或Inf的情况,导致训练无法正常进行。出现这种情况的原因主要有以下几点:1. 梯度爆炸2. 出现除零、对数函数自变量为负值等数学问题3. 出现坏样本1. 梯度爆炸训练过程中由于学习率等超参数设置的不合理,导致优化过程中没有减小los
原创
发布博客 2021.07.27 ·
35223 阅读 ·
51 点赞 ·
16 评论 ·
159 收藏

第232场LeetCode周赛

第232场LeetCode周赛No 1. 仅执行一次字符串交换能否使两个字符串相等给你长度相等的两个字符串 s1 和 s2 。一次 字符串交换 操作的步骤如下:选出某个字符串中的两个下标(不必不同),并交换这两个下标所对应的字符。如果对 其中一个字符串 执行 最多一次字符串交换 就可以使两个字符串相等,返回 true ;否则,返回 false 。示例 1:输入:s1 = “bank”, s2 = “kanb”输出:true解释:例如,交换 s2 中的第一个和最后一个字符可以得到 “bank”
原创
发布博客 2021.03.18 ·
232 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第47场 LeetCode 双周赛

第47场 LeetCode 双周赛本次周赛链接No.1 找到最近的有相同 X 或 Y 坐标的点给你两个整数 x 和 y ,表示你在一个笛卡尔坐标系下的 (x, y) 处。同时,在同一个坐标系下给你一个数组 points ,其中 points[i] = [ai, bi] 表示在 (ai, bi) 处有一个点。当一个点与你所在的位置有相同的 x 坐标或者相同的 y 坐标时,我们称这个点是 有效的 。请返回距离你当前位置 曼哈顿距离 最近的 有效 点的下标(下标从 0 开始)。如果有多个最近的有效点,请返
原创
发布博客 2021.03.11 ·
601 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文笔记 - BiFuse: Monocular 360◦ Depth Estimation via Bi-Projection Fusion. CVPR 2020

论文笔记 - BiFuse: Monocular 360◦ Depth Estimation via Bi-Projection Fusion. CVPR 20201. Introduction2. Related Work3. Approach4. Experimental Results实际测试:这篇博客介绍一篇CVPR2020的论文,这篇论文结合了全景图(360°图像)的两种常见投影方式,设计了融合模块及双分支神经网络,实现了出色的单目全景图深度估计性能。论文地址:https://ieeexplor
原创
发布博客 2021.03.06 ·
1320 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

第219场LeetCode周赛

第219场LeetCode周赛No.1 比赛中的配对次数给你一个整数 n ,表示比赛中的队伍数。比赛遵循一种独特的赛制:如果当前队伍数是 偶数 ,那么每支队伍都会与另一支队伍配对。总共进行 n / 2 场比赛,且产生 n / 2 支队伍进入下一轮。如果当前队伍数为 奇数 ,那么将会随机轮空并晋级一支队伍,其余的队伍配对。总共进行 (n - 1) / 2 场比赛,且产生 (n - 1) / 2 + 1 支队伍进入下一轮。返回在比赛中进行的配对次数,直到决出获胜队伍为止。示例 1:输入:n = 7
原创
发布博客 2020.12.15 ·
379 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

论文笔记 - PSM-Net: Pyramid Stereo Matching Network. CVPR 2018

Pyramid Stereo Matching Network. CVPR 2018本文指出,通过立体图像对估计深度已经能够表征为监督学习任务并且通过卷积神经网络解决。但是已有算法都依赖于基于patch的孪生网络,缺乏对上下文信息的利用,难以找到非适定区域关联性。本文提出了金字塔立体匹配网络PSM-Net,主要包括了空间金字塔池化与3D CNN。空间金字塔池化能够通过多尺度累积获取全局语境信息,3DCNN能够通过堆叠沙漏网络及中间结果监督规则化cost volume,获取视差图。Introduction
原创
发布博客 2020.12.10 ·
1218 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

第218场LeetCode周赛

第218场LeetCode周赛No 1. 设计 Goal 解析器请你设计一个可以解释字符串 command 的 Goal 解析器 。command 由 “G”、"()" 和/或 “(al)” 按某种顺序组成。Goal 解析器会将 “G” 解释为字符串 “G”、"()" 解释为字符串 “o” ,"(al)" 解释为字符串 “al” 。然后,按原顺序将经解释得到的字符串连接成一个字符串。给你字符串 command ,返回 Goal 解析器 对 command 的解释结果。示例 1:输入:command
原创
发布博客 2020.12.07 ·
229 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ubuntu编译caffe可能遇到的坑

ubuntu编译caffe可能遇到的坑caffe作为深度学习最早的框架之一,对于现在DL的发展起到了很大的贡献。然而相比于现在更加主流的tensorflow、pytorch等,其编译过程常常让人很痛苦。这篇博客记录一下caffe编译配置过程中常见的问题,能够解决的问题会给出解决方案。首先caffe不一定非要手动编译,以ubuntu为例,在20.04之前的版本,可以通过apt安装caffe-cuda和caffe-cpu(cpu版本)。然而Ubuntu20.04只有caffe-cpu,可能过段时间会加上吧
原创
发布博客 2020.11.25 ·
568 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

第216场LeetCode周赛

第216场LeetCode周赛
原创
发布博客 2020.11.22 ·
180 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

LeetCode 第38次双周赛

//No 1 vector<int> frequencySort(vector<int>& nums) { unordered_map<int, int> m; for (auto n : nums)m[n]++; vector<pair<int, int>> vp; for (auto mm : m) { vp.push_back({ mm.second,mm.first }); }
原创
发布博客 2020.11.03 ·
352 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pytorch命令行打印模型结构的两种方法及对比

pytorch命令行打印模型结构的两种方法及对比当我们使用pytorch进行模型训练或测试时,有时候希望能知道模型每一层分别是什么,具有怎样的参数。此时我们可以将模型打印出来,输出每一层的名字、类型、参数等。常用的命令行打印模型结构的方法有两种:一是直接print二是使用torchsummary库的summary但是二者在输出上有着一些区别。首先说结论:1. print输出结果是每一层的名字、类别、以及构造时的参数,例如对于卷积层,还包括用户定义的stride、bias等;而torch summ
原创
发布博客 2020.10.24 ·
43171 阅读 ·
51 点赞 ·
5 评论 ·
89 收藏
加载更多