「HAOI2018」字串覆盖 「HAOI2018」字串覆盖题意: 给你两个字符串,长度都为\(N\),以及一个参数\(K\),有\(M\)个询问,每次给你一个\(B\)串的一个子串,问用这个字串去覆盖\(A\)串一段区间的最大收益是多少?(\(N,M\le100000,K\leq10^9\))其中,子串长度在\(51\)到\(2000\)的询问个数不会超过\(11000\)个。题解: 题目的暗示很明显,分...
xsy3320 string xsy3320 string题意: 给一颗树,每条边上有一个字符,求有多少条路径是回文的。(\(N\leq50000\),\(c\in\{1,2\}\))题解: 前置芝士:回文前缀&&border 先点分治,问题变成求经过分治中心的回文路径个数。 观察这样的路径长啥样:u - S -> rt <- T - k <- S -v。 ...
noi2019模拟测试赛(四十七) noi2019模拟测试赛(四十七)T1与运算(and)题意: 给你一个序列\(a_i\),定义\(f_i=a_1\&a_2\&\cdots\&a_i\),求这个序列的所有排列的\(\Sigma_i f_i\)的最大值。题解: dp,记\(dp_i\)表示前面的数与和为\(i\)的最大值,转移要一个超集的东西,fwt搞一搞就行了。#include&l...
JOISC 2017 Day1 T3 烟花棒 JOISC 2017 Day1 T3 烟花棒题意: 数轴上有\(N\)人在放烟花,一开始只有第\(K\)个人的烟花是点燃的,烟花燃烧的时间为\(T\)秒,求让所有人的烟花都可以点燃的速度的最小值。(\(N\leq1e5,T\leq1e9\))。题解: 好难啊。。。。 肯定是二分答案,现在问题转化为能否覆盖整个区间。一个很显然的结论:如果\([i,j]\)都可以点燃,则满足...
「HAOI2016」字符合并 「HAOI2016」字符合并题意: 有一个长度为\(n\)的\(01\)串,你可以每次将相邻的\(k\)个字符合并,得到一个新的字符并获得一定分数。得到的新字符和分数由这\(k\)个字符确定。你需要求出你能获得的最大分数。(\(n\le 300,k\leq8\))题解: 关键是要想到区间dp。记\(f[i][j][s]\),表示区间\([i,j]\),合并后状态为\(s\)的...
「JOISC 2018 Day 3」比太郎的聚会 「JOISC 2018 Day 3」比太郎的聚会题意: 给你一个\(DAG\),若干组询问,每次给出一个终点和若干个点,问从给出点以外的点出发,到达终点的最长路。(\(|V|\leq 1e5 |E|\leq 1e6 \sum Y_i\leq 1e5\))题解: 一开始没看见最后那个条件,不会做。。。 既然有那个\(\sum Y_i\leq 1e5\)就好办了,把\(Y_i...
XSY3244 10.31 D XSY3244 10.31 D题意: 数轴上有\(N\)只老鼠\(M\)个洞,每个洞有一个容量,求所有老鼠进洞的最小代价。(\(N,M\leq1000000\),时限\(2s\))题解: 被代爷的前两道题卡得醉生梦死,场上根本没看这题。。。 十万的档显然可以\(dp\),加个线段树什么的就可以了。 对于100%的数据,上面的那个\(dp\)已经没用了,代爷给的做法是正...
NOI2017整数 NOI2017 整数题意: 让你实现两个操作:1 \(a\) \(b\):将\(x\)加上整数\(a \cdot 2 ^ b\),其中 \(a\)为一个整数,\(b\)为一个非负整数2 \(k\):询问 \(x\)在用二进制表示时,位权为\(2 ^ k\)的位的值(即这一位上的\(1\)代表\(2 ^ k\)) 一百万次操作,$ |a| \leq 10^9,b,k\le...
JOISC 2018 Day 2 最差记者3 JOISC 2018 Day 2 最差记者3题意: 数轴上有\(N\)个选手和一个旗手,旗手在位置\(0\)<第\(i\)人的位置为\(-i\),每个选手有一个参数\(D_i\)。旗手每单位时间向右走\(1\)单位,选手根据以下规则向右走:若与前一个人距离\(\le D_i\),\(i\)号选手不移动;若与前一个人距离\(> D_i\),则\(i\)号选手会立即向...
2017国家集训队作业[agc016e]Poor Turkey 2017国家集训队作业[agc016e]Poor Turkey题意:一开始有\(N\)只鸡是活着的,有\(M\)个时刻,每个时刻有两个数\(X_i,Y_i\),表示在第\(i\)个时刻在\(X_i,Y_i\)之中选出一只还活着的鸡乃伊组特,如果两只鸡在这之前就已经被干掉,保持原状。问:\(M\)个时刻后有多少对鸡可能同时存活?(\(N\leq400,M\leq 10^5\))题解:...
APIO2015 八邻旁之桥 APIO2015 八邻旁之桥题意: 自己看题解: 校内模拟赛做到这题,数据范围崩了,\(K=21\)???好吧\(或K=1或2\)。切了。 先判在一侧的情况。\(K=1\)桥显然在所有端点位置的中位数。\(K=2\)时,我们发现一个人总会走离\(\frac{S_i+T_i}{2}\)近的那座桥,那就按\(\frac{S_i+T_i}{2}\)排序,权值线段树在线插入&am...
BZOJ4383[POI2015]pustynia BZOJ4383[POI2015]pustynia题意:有\(N\)个正整数,每个数都小于\(10^9\),已知初始给你的\(S\)个数,以及\(M\)个限制,第\(i\)个限制给你一个区间\(L_i\sim R_i\)和\(K_i\)个位置,表示这个区间内,这\(K_i\)个位置上的数大于任意剩下的\(R_i-L_i+1-K_i\)个位置上的数。求可行方案。(\(N,S\le 10...
NOI2016 国王饮水记 NOI2016 国王饮水记题意: 自己看题解: 这题是大结论题,推荐这篇博客 结论找出来后不难做,但是,他卡你有没有看说明书!!!#include<cstdio>#include<cstring>#include<iostream>#include<algorithm>#define fo(i,l,r) for(i...
2017国家集训队作业[agc004f]Namori 2017国家集训队作业[agc004f]Namori题意:给你一颗树或环套树,树上有\(N\)个点,有\(M\)条边。一开始,树上的点都是白色,一次操作可以选择一条端点颜色相同的边,使它的端点颜色同时取反,即白色变成黑色或黑色变成白色。问,最少需要几次操作才可以把整棵树都涂成黑色?(\(N\leq10^5,N-1\le M\le N\))题解:参考:https://blog.cs...
ZJOI2017线段树 ZJOI2017线段树题意: 给你一颗广义线段树,太长了,自己去看。题解: 直接上zkw那一套,把闭区间换成开区间,就是把取\([l,r]\),变成取\([l-1,l-1],[r+1,r+1]\)两个端点,往跳,如果\([l-1,l-1]\)往上跳到某一层时,它是它父亲的左儿子,那它的兄弟就是区间中的点。 答案就是(\(u\)是询问的点,\(v\)是区间中的点):\[...
2017国家集训队作业[agc006f]Blackout 2017国家集训队作业[agc006f]Blackout题意:有一个\(N*N\)的网格,一开始有\(M\)个格子被涂黑,给出这\(M\)个格子,和染色操作:如果有坐标为\((x,y),(y,z)\)的格子已被染黑,那么就可以染黑坐标为\((y,z)\)的格子。问操作到不能再操作的时候,网格里有多少个黑格子?(\(1\le N,M\le 10^5\),最开始给出的\(M\)个坐标互不...
2017国家集训队作业[arc082d]Sandglass 2017国家集训队作业[arc082d]Sandglass题意: 有一个沙漏,初始时\(A\)瓶在上方,两个瓶子的最大容量都为\(X\)克,沙子流动的速度为\(1g\)每单位时间。给出\(K\)个时间点\(r_1\sim r_K\)表示在这几个时间点,漏斗会上下翻转,无视翻转时间。给出\(Q\)个询问,每个询问两个数\(t_i,a_i\),表示若初始时\(A\)瓶有\(a_i\)克...
2017国家集训队作业[agc016b]Color Hats 2017国家集训队作业[agc016b]Color Hats题意:有\(N\)个人,每个人有一顶帽子。帽子有不同的颜色。现在,每个人都告诉你,他看到的所有其它人的帽子共有多少种颜色,问有没有符合所有人的描述的情况。(\(N\leq 10^5\))题解:网上有很多题解。我在这里讲讲我在场上打表的心路历程。话说我最后半小时终于从\(T2\)的泥潭中脱困,看到这题,打了个表:31...
2017国家集训队作业[agc006e]Rotate 3x3 2017国家集训队作业[agc006e]Rotate 3x3题意: 给你一个\(3*N\)的网格,每次操作选择一个\(3*3\)的网格,旋转\(180^\circ\)。问可不可以使每个位置\((i,j)\)的数为\(i+3*(j-1)\)。(\(n\leq10^5\))题解: 因为在操作中,一列的\(3\)个数不可能被打乱,可以预处理判断。我们思考旋转一次造成的影响有什么?记...
数学竞赛 数学竞赛题目描述:你们可能看不见图片。。。UPD:2018/8/15 可以看见啦SAMEPLE INPUT1111110001/2SAMEPLE OUTPUT63616161(你以为信息竞赛就只考信息吗?:P orz SK分析: 很显然,如果我们只需要\(x\rightarrow\frac{1}{x}\)和\(x\rightarrow x+1\)、\(x\ri...