DFS之二叉搜索树与双向链表

剑指 Offer 36. 二叉搜索树与双向链表

输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的循环双向链表。要求不能创建任何新的节点,只能调整树中节点指针的指向。

为了让您更好地理解问题,以下面的二叉搜索树为例:
在这里插入图片描述
我们希望将这个二叉搜索树转化为双向循环链表。链表中的每个节点都有一个前驱和后继指针。对于双向循环链表,第一个节点的前驱是最后一个节点,最后一个节点的后继是第一个节点。

下图展示了上面的二叉搜索树转化成的链表。“head” 表示指向链表中有最小元素的节点。
在这里插入图片描述

特别地,我们希望可以就地完成转换操作。当转化完成以后,树中节点的左指针需要指向前驱,树中节点的右指针需要指向后继。还需要返回链表中的第一个节点的指针。

解题思路:
本文解法基于性质:二叉搜索树的中序遍历为 递增序列 。
将 二叉搜索树 转换成一个 “排序的循环双向链表” ,其中包含三个要素:

排序链表: 节点应从小到大排序,因此应使用 中序遍历 “从小到大”访问树的节点;
双向链表: 在构建相邻节点(设前驱节点 pre ,当前节点 cur)关系时,不仅应 pre.right = cur ,也应 cur.left = pre 。注意这里的right和left指的是双向链表的右(后)边和左(前)边指向
循环链表: 设链表头节点 head 和尾节点 tail ,则应构建 head.left = tail 和 tail.right = head 。

在这里插入图片描述
中序遍历递归代码如下:

 打印中序遍历
def dfs(root):
    if not root: return
    dfs(root.left)  # 左
    print(root.val) # 根
    dfs(root.right) # 右

根据以上分析,考虑使用中序遍历访问树的各节点 cur ;并在访问每个节点时构建 cur 和前驱节点 pre 的引用指向;中序遍历完成后,最后构建头节点和尾节点的引用指向即可。

算法流程:
dfs(curr):递归法中序遍历
1.终止条件:当节点curr为空,代表越过了叶子节点,直接返回;
2.递归左子树,即dfs(curr.left);
3.构建链表:

  • pre为空时,代表正在访问链表头结点,记为head
  • pre不为空时,修改双向节点引用指针,即pre.right=curr, curr.left=pre
  • 保存curr,更新pre=curr,即节点curr是后继节点的pre

4.递归右子树,即dfs(curr.right)
treeToDOublyList(root):
1.特别处理:节点root为空,则直接返回
2.初始化:空节点pre
3.转化为双向链表:调用dfs(root)
4.构建循环链表:中序遍历完成后,head指向头结点,pre指向尾节点,因此修改headpre的双向节点引用指针即可
5.返回值:返回链表的头结点head即可

代码如下:

"""
# Definition for a Node.
class Node:
    def __init__(self, val, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
"""
class Solution:
    def treeToDoublyList(self, root: 'Node') -> 'Node':
        
        def dfs(curr):
            if not curr:
                return
            dfs(curr.left) # 遍历左子树
            # 做当前的事
            if not self.pre: # 还未更新过pre,代表当前访问的是第一个节点,也就是头结点
                self.head = curr
            else:
                self.pre.right = curr # 前驱节点的下一个(right)指向当前节点
                curr.left = self.pre # 当前节点的上一个(left)指向前驱节点
            self.pre = curr
            
            dfs(curr.right) # 遍历右子树

        if not root:
            return 
        self.pre = None # 初始化前驱节点为空
        dfs(root) # 中序遍历树
        self.head.left = self.pre # 头节点的左指向最后一个节点,注意是左,理解为上一个(left)
        self.pre.right = self.head # 尾节点的右指向第一个节点,注意是右,可以理解为下一个(right)
        return self.head        
©️2020 CSDN 皮肤主题: 黑客帝国 设计师:上身试试 返回首页