Tensorflow源码编译,解决tf提示未使用SSE4.1 SSE4.2 AVX警告【转】

本文转载自:https://blog.csdn.net/iTaacy/article/details/72799833

版权声明:欢迎转载,转载请注明出处! https://blog.csdn.net/iTaacy/article/details/72799833

TensorFlow CPU环境 SSE/AVX/FMA 指令集编译

sess.run()出现如下Warning

# 通过pip install tensorflow 来安装tf在 sess.run() 的时候可能会出现
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

这说明你的machine支持这些指令集但是TensorFlow在编译的时候并没有加入这些指令集,需要手动编译TensorFlow才能够加入这些指令集。

# 1. 下载最新的 TensorFlow
$ git clone https://github.com/tensorflow/tensorflow

# 2. 安装 bazel
# mac os 
$ brew install bazel

# ubuntu $ sudo apt-get update && sudo apt-get install bazel # Windows $ choco install bazel # 3. Install TensorFlow Python dependencies # 如果使用的是Anaconda这部可以跳过 # mac os $ pip install six numpy wheel $ brew install coreutils # 安装coreutils for cuda $ sudo xcode-select -s /Applications/Xcode.app # set build tools # ubuntu sudo apt-get install python3-numpy python3-dev python3-pip python3-wheel sudo apt-get install libcupti-dev # 4. 开始编译TensorFlow # 4.1 configure $ cd tensorflow # cd to the top-level directory created # configure 的时候要选择一些东西是否支持,这里建议都选N,不然后面会包错,如果支持显卡,就在cuda的时候选择y $ ./configure # configure # 4.2 bazel build # CUP-only $ bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package # GPU support bazel build --config=opt --config=cuda //tensorflow/tools/pip_package:build_pip_package # 5 安装刚刚编译好的pip 包 # 这里安装的时候官方文档使用的是sudo命令,如果是个人电脑,不建议使用sudo, 直接pip即可。 $ pip install /tmp/tensorflow_pkg/tensorflow-{version}-none-any.whl # 6 接下来就是验证你是否已经安装成功 $ python -c "import tensorflow as tf; print(tf.Session().run(tf.constant('Hello, TensorFlow')))" # 然后你就会看到如下输出 b'Hello, TensorFlow' # 恭喜你,成功编译了tensorflow,Warning也都解决了!
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

报错解决

Do you wish to build TensorFlow with MKL support? [y/N] y
MKL support will be enabled for TensorFlow Do you wish to download MKL LIB from the web? [Y/n] y Darwin is unsupported yet # 这里MKL不支持Darwin(MAC),因此要选择N ERROR: /Users/***/Documents/tensorflow/tensorflow/core/BUILD:1331:1: C++ compilation of rule '//tensorflow/core:lib_hash_crc32c_accelerate_internal' failed: cc_wrapper.sh failed: error executing command external/local_config_cc/cc_wrapper.sh -U_FORTIFY_SOURCE -fstack-protector -Wall -Wthread-safety -Wself-assign -fcolor-diagnostics -fno-omit-frame-pointer -g0 -O2 '-D_FORTIFY_SOURCE=1' -DNDEBUG ... (remaining 32 argument(s) skipped): com.google.devtools.build.lib.shell.BadExitStatusException: Process exited with status 1. clang: error: no such file or directory: 'y' clang: error: no such file or directory: 'y' # 这里是因为在configure的时候有些包不支持但是选择了y,因此记住一点所有的都选n
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

Reference

[1]: https://www.tensorflow.org/install/install_sources

转载于:https://www.cnblogs.com/zzb-Dream-90Time/p/9669314.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值