一、原码表示法
◆ 规定符号位位于数值第一位
◆ 使用0表示正数、1表示负数
◆ 表达简单明了,是人类最容易理解的表示法
+237=011101101
-237=111101101
二、补码表示法
补码的定义

例子:x=-13,计算x的二进制原码和补码
原码:x=1,1101
补码:2𝑛+1 + 𝑥 = 24+1 − 13 = 100000 − 1101 = 10011
补码:x=1,0011
三、反码表示法
反码的定义

例子:x=-13,计算x的二进制原码和反码
原码:x=1,1101
反码:(2𝑛+1−1) + 𝑥 = (24+1−1) − 13 = 011111 − 1101 = 10010
反码:x=1,0010
四、小数的补码
例子1:x= 9 /16 ,计算x的二进制原码和反码和补码
- 原码:x=0,0.1001 反码:x= 0,0.1001 补码:x= 0,0.1001
例子2:x=- 11/ 32,计算x的二进制原码和反码和补码
- 原码:x=1,0.01011 反码:x=1,1.10100 补码:x=1,1.10101
五、总结
原码的补码和反码等于本身
负数的反码等于原码除符号位外按位取反
负数的补码等于反码+1

本文详细介绍了二进制数的原码、补码、反码表示法,包括正负数的处理方式,以及小数部分的特殊表示规则。通过具体实例,深入解析不同表示法之间的转换过程。
1609

被折叠的 条评论
为什么被折叠?



