转自http://jpkc.nwpu.edu.cn/dzjc/xiandaitongxin/jc/text/2.5.htm 本节介绍几种噪声,它们在通信系统的理论分析中常常用到,实际统计与分析研究证明,这些噪声的特性是符合具体信道特性的。 1 白噪声 在通信系统中,经常碰到的噪声之一就是白噪声。所谓白噪声是指它的功率谱密度函数在整个频域 |
![]() |
式中, |
![]() |
由信号分析的有关理论可知,功率信号的功率谱密度与其自相关函数![]() |
![]() |
因此,白噪声的自相关函数为 |
![]() |
式(2-25)表明,白噪声的自相关函数是一个位于![]() ![]() |
![]() |
实际上完全理想的白噪声是不存在的,通常只要噪声功率谱密度函数均匀分布的频率范围远远超过通信系统工作频率范围时,就可近似认为是白噪声。例如,热噪声的频率可以高到![]() ![]() 2 高斯噪声 在实际信道中,另一种常见噪声是高斯噪声。所谓高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。其一维概率密度函数可用数学表达式表示为 |
![]() |
式中, |
![]() |
而噪声的方差为 |
![]() |
所以,有 |
![]() |
上述结论非常有用,在通信系统的性能分析中,常常通过求自相关函数或方差的方法来计算噪声的功率。 由于高斯噪声在后续章节中计算系统抗噪声性能时要反复用到,下面予以进一步讨论。 式(2-26)可用图2-12表示。 |
![]() |
由公式(2-26)和图2-12容易看出高斯噪声的一维概率密度函数
(2)
|
(3) |
且有
现在再来看正态概率分布函数
将式(2-26)正态概率密度函数代入,得正态概率分布函数
这个积分不易计算,常引入误差函数来表述。所谓误差函数,它的定义式为
可以证明,利用误差函数的概念,正态分布函数可表示为
用误差函数表示 我们已经知道,白噪声是根据噪声的功率谱密度是否均匀来定义的,而高斯噪声则是根据它的概率密度函数呈正态分布来定义的,那么什么是高斯型白噪声呢? 4 窄带高斯噪声 通信的目的在于传递信息,通信系统的组成往往是为携带信息的信号提供一定带宽的通道,其作用在于一方面让信号畅通无阻,同时最大限度的抑制带外噪声。所以实际通信系统往往是一个带通系统。下面研究带通情况下的噪声情况。
式中,
将式(2-39)展开,可得窄带高斯噪声的另外一种表达形式,即
其中
![]() ![]() ![]() ![]() 点此看窄带噪声的flash 2. 统计特性 由式(2-39)及式(2-40)可以看出,窄带高斯噪声 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() (1)一个均值为零,方差为 ![]() ![]() ![]() ![]()
式(2-44)常可表示为
这里,
5 正弦信号加窄带高斯噪声 信道中加性噪声无时不在,信号经过信道传输总会受到它的影响。因此,接收端收到的信号实际上是信号与噪声的合成波。通信系统中,常常碰到的合成信号具有正弦信号加窄带高斯噪声的形式,如在分析2ASK、2FSK、2PSK等信号抗噪声性能时,其信号均为 |
![]() |
式中 |
![]() |
为信道加性窄带高斯噪声; |
![]() |
![]() |
分别为合成信号的随机包络和随机相位。 |
![]() |
式中, |
![]() |