To The Max
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4592 Accepted Submission(s): 2165
Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
Sample Output
15
分析:通过转换成最大字段和
第一步:s[i][k]=a[1][k]+ …… +a[i][k]
第二步:t[k]=s[j][k]-s[i][k];
第三步:求t[]的最大字段和
原因:假设最终的子矩阵和行是i、j;
那么最终是求(a[i][1]+ …… +a[j][1],a[i][2]+ …… +a[j][2], …… ,a[i][n]+ …… +a[j][n])的最大字段和。
View Code
1 #include<iostream> 2 #include<cstdio> 3 #define N 110 4 5 using namespace std; 6 7 int a[N][N],s[N][N]; 8 9 int max(int A,int B) 10 { 11 return A>B?A:B; 12 } 13 14 int maxsum(int *A,int n) 15 { 16 int i,t,ans; 17 ans=A[1];t=0; 18 for(i=1;i<=n;i++) 19 { 20 t=max(A[i],t+A[i]); 21 if(ans<t) 22 ans=t; 23 } 24 return ans; 25 } 26 27 int main() 28 { 29 int n,i,j,k,ans,ret,t[N]; 30 while(scanf("%d",&n)==1) 31 { 32 for(i=0;i<=n;i++) 33 s[i][0]=s[0][i]=a[i][0]=a[0][i]=0; 34 for(i=1;i<=n;i++) 35 for(j=1;j<=n;j++) 36 { 37 scanf("%d",&a[i][j]); 38 s[i][j]=s[i-1][j]+a[i][j]; 39 } 40 ans=-100000000; 41 for(i=0;i<=n;i++) 42 { 43 for(j=i+1;j<=n;j++) 44 { 45 for(k=1;k<=n;k++) 46 { 47 t[k]=s[j][k]-s[i][k]; 48 } 49 ret=maxsum(t,n); 50 if(ans<ret) 51 ans=ret; 52 } 53 } 54 printf("%d\n",ans); 55 } 56 return 0; 57 }