CF1131D Gourmet choice(并查集,拓扑排序)

这题CF给的难度是2000,但我感觉没这么高啊……

题目链接:CF原网

题目大意:有两个正整数序列 $a,b$,长度分别为 $n,m$。给出所有 $a_i$ 和 $b_j(1\le i\le n,1\le j\le m)$ 的大小关系(大于,小于或者等于),请构造出符合条件的 $a$ 和 $b$。如果无解,输出NO。如果有多个解,输出 $a,b$ 中最大元素最小的方案。

$1\le n,m\le 1000$。


这题一眼差分约束。但是看着没有具体的数字……(主要是我不会打)

然而二眼就是拓扑排序。每次将小的数往大的数连边,然后跑拓扑排序。规定一开始入度为 $0$ 的点的值为 $1$,然后拓扑时简单转移一下就好了。如果有点没有被遍历到(就是大小关系有环),那么显然无解。

不过有相同的元素……看着不好搞……

算了,直接上并查集。把相同的元素压到一个集合,然后把这些点看成一个点操作。

时间复杂度 $O(nm)$。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=1000100;
#define MP make_pair
#define PB push_back
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
    char ch=getchar();int x=0,f=0;
    while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
    while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
    return f?-x:x;
}
int n,m,el,head[2020],to[maxn],nxt[maxn],q[2020],h=1,r,deg[2020],fa[2020],val[maxn];
char mp[1010][1010];
bool vis[2020];
inline void add(int u,int v){
    to[++el]=v;nxt[el]=head[u];head[u]=el;deg[v]++;
}
int getfa(int x){
    return x==fa[x]?x:fa[x]=getfa(fa[x]);
}
void unite(int x,int y){
    x=getfa(x);y=getfa(y);
    if(x!=y) fa[x]=y;
}
int main(){
    n=read();m=read();
    FOR(i,1,n) scanf("%s",mp[i]+1);
    FOR(i,1,n+m) fa[i]=i;
    FOR(i,1,n) FOR(j,1,m) if(mp[i][j]=='=') unite(i,j+n);
    FOR(i,1,n) FOR(j,1,m){
        if(mp[i][j]=='<') add(getfa(i),getfa(j+n));
        if(mp[i][j]=='>') add(getfa(j+n),getfa(i));
    }
    FOR(i,1,n+m) if(i==getfa(i) && !deg[i]) q[++r]=i,val[i]=1,vis[i]=true;
    while(h<=r){
        int u=q[h++];
        for(int i=head[u];i;i=nxt[i]){
            int v=to[i];
            if(vis[v]) continue;
            if(!--deg[v]){
                vis[v]=true;
                val[v]=val[u]+1;
                q[++r]=v;
            }
        }
    }
    FOR(i,1,n+m) if(i==getfa(i) && !vis[i]) return puts("No"),0;
    puts("Yes");
    FOR(i,1,n) printf("%d ",val[getfa(i)]);
    puts("");
    FOR(i,1,m) printf("%d ",val[getfa(i+n)]);
}
View Code

 

转载于:https://www.cnblogs.com/1000Suns/p/10424653.html

以下是对提供的参考资料的总结,按照要求结构化多个要点分条输出: 4G/5G无线网络优化与网规案例分析: NSA站点下终端掉4G问题:部分用户反馈NSA终端频繁掉4G,主要因终端主动发起SCGfail导致。分析显示,在信号较好的环境下,终端可能因节能、过热保护等原因主动释放连接。解决方案建议终端侧进行分析处理,尝试关闭节电开关等。 RSSI算法识别天馈遮挡:通过计算RSSI平均值及差值识别天馈遮挡,差值大于3dB则认定有遮挡。不同设备分组规则不同,如64T和32T。此方法可有效帮助现场人员识别因环境变化引起的网络问题。 5G 160M组网小区CA不生效:某5G站点开启100M+60M CA功能后,测试发现UE无法正常使用CA功能。问题原因在于CA频点集标识配置错误,修正后测试正常。 5G网络优化与策略: CCE映射方式优化:针对诺基亚站点覆盖农村区域,通过优化CCE资源映射方式(交织、非交织),提升RRC连接建立成功率和无线接通率。非交织方式相比交织方式有显著提升。 5G AAU两扇区组网:与三扇区组网相比,AAU两扇区组网在RSRP、SINR、下载速率和上传速率上表现不同,需根据具体场景选择适合的组网方式。 5G语音解决方案:包括沿用4G语音解决方案、EPS Fallback方案和VoNR方案。不同方案适用于不同的5G组网策略,如NSA和SA,并影响语音连续性和网络覆盖。 4G网络优化与资源利用: 4G室分设备利旧:面对4G网络投资压减与资源需求矛盾,提出利旧多维度调优策略,包括资源整合、统筹调配既有资源,以满足新增需求和提质增效。 宏站RRU设备1托N射灯:针对5G深度覆盖需求,研究使用宏站AAU结合1托N射灯方案,快速便捷地开通5G站点,提升深度覆盖能力。 基站与流程管理: 爱立信LTE基站邻区添加流程:未提供具体内容,但通常涉及邻区规划、参数配置、测试验证等步骤,以确保基站间顺畅切换和覆盖连续性。 网络规划与策略: 新高铁跨海大桥覆盖方案试点:虽未提供详细内容,但可推测涉及高铁跨海大桥区域的4G/5G网络覆盖规划,需考虑信号穿透、移动性管理、网络容量等因素。 总结: 提供的参考资料涵盖了4G/5G无线网络优化、网规案例分析、网络优化策略、资源利用、基站管理等多个方面。 通过具体案例分析,展示了无线网络优化中的常见问题及解决方案,如NSA终端掉4G、RSSI识别天馈遮挡、CA不生效等。 强调了5G网络优化与策略的重要性,包括CCE映射方式优化、5G语音解决方案、AAU扇区组网选择等。 提出了4G网络优化与资源利用的策略,如室分设备利旧、宏站RRU设备1托N射灯等。 基站与流程管理方面,提到了爱立信LTE基站邻区添加流程,但未给出具体细节。 新高铁跨海大桥覆盖方案试点展示了特殊场景下的网络规划需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值