洛谷 U84973 RJJ的水题

洛谷 U84973 RJJ的水题

题目传送门

题目背景

快要开学了,机房的训练也紧锣密鼓的进行着。这一天,SeawaySeaway的好朋友iamrjjiamrjj给Seaway*Seawa**y*出了一道水题...

题目描述

iamrjjiamrjj的题是这样的:给定一张NN个点,MM条边的带权无向图,有XX个景点分布在这NN个点上(提示:可能有多个景点在同一个点上),显然,一定有一个点到这XX个景点的距离和最小。现在,给你这张图的情况和这XX个景点的分布,请你找出这个最小的距离和。 虽然iamrjjiamrjj一再声称这是一道水题,但蒟蒻Seaway*Seawa**y*还是不会了...于是他偷偷地找到你来帮忙,以至于他不会过于难堪...你能帮他解决这个问题么?

输入格式

第一行包含三个整数:X,N,MX,N,M,意义如题所示。

之后的XX行,每行一个整数,表示这个景点在哪个点上。

之后的MM行,每行三个整数U,V,ZU,V,Z,表示从UU到VV有一条长度为ZZ的边。

输出格式

一行,表示最小的距离和。

输入输出样例

输入 #1复制

输出 #1复制

说明/提示

对于全部数据,1\le N \le 800,1\le M \le 10^5,1\le X \le 5001≤N≤800,1≤M≤105,1≤X≤500,保证所有路径长度1\le Z\le 2501≤Z≤250.

题解:

Seaway的基础图论专场T1...

其实是一道比较裸的最短路了,但是对算法选择上有一定要求,本题的数据卡DIJ,所以只能用SPFA AC。

细节实现我就不讲了,直接上代码:

代码:

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
int cow,n,m,ans=2147483647;
int pos[510];
int tot,to[100001],val[100001],nxt[100001],head[810];
int f[810],v[810];
void add(int x,int y,int z)
{
    to[++tot]=y;
    val[tot]=z;
    nxt[tot]=head[x];
    head[x]=tot;
}
void spfa(int start)
{
    memset(f,0x3f,sizeof(f));
    memset(v,0,sizeof(v));
    queue<int> q;
    q.push(start);f[start]=0;v[start]=1;
    while(!q.empty())
    {
        int x,y;
        x=q.front();q.pop();v[x]=0;
        for(int i=head[x];i;i=nxt[i])
            if(f[y=to[i]]>f[x]+val[i])
            {
                f[y]=f[x]+val[i];
                if(v[y]==0) v[y]=1,q.push(y);
            }
    }
}
int main()
{
    //freopen("#10.in","r",stdin);
    //freopen("#10.out","w",stdout);
    scanf("%d%d%d",&cow,&n,&m);
    for(int i=1;i<=cow;i++)
        scanf("%d",&pos[i]);
    for(int i=1;i<=m;i++)
    {
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        add(x,y,z);
        add(y,x,z);
    }
    spfa(1);
    for(int i=1;i<=n;i++)
    {
        int dist=0;
        spfa(i);
        for(int j=1;j<=cow;j++)
            dist+=f[pos[j]];
        ans=min(ans,dist);
    }
    printf("%d",ans);
    return 0;
}

转载于:https://www.cnblogs.com/fusiwei/p/11396200.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值