洛谷 P1226 【模板】快速幂||取余运算

洛谷 P1226 【模板】快速幂||取余运算

题目传送门

题目描述

输入b,p,k的值,求b^p mod k的值。其中b,p,k*k为长整型数。

输入格式

三个整数b,p,k.

输出格式

输出“b^p mod k=s”

s为运算结果

输入输出样例

输入 #1复制

输出 #1复制

题解:

快速幂模板题目。关于快速幂的讲解请参考我的上一篇博客:

浅谈快速幂

直接上代码:

#include<cstdio>
#define ll long long
using namespace std;
ll b,p,k;
ll qpow(ll a,ll b,ll mod)
{
    int ret=1;
    while(b>0)
    {
        if(b&1)
            ret=(ret*a)%mod;
        a=(a*a)%mod;
        b>>=1;
    }
    return ret%mod;
}
int main()
{
    scanf("%lld%lld%lld",&b,&p,&k);
    printf("%lld^%lld mod %lld=%lld",b,p,k,qpow(b,p,k));
    return 0;
}

转载于:https://www.cnblogs.com/fusiwei/p/11599934.html

### 回答1: 快速幂是一种用于快速计算幂运算的算法,其基本思想是将指数进行二进制拆分,然后利用指数的二进制表示来快速计算幂运算。在计算过程中,可以利用取余运算来避免数溢出,提高计算效率。快速幂算法的时间复杂度为O(logn)。 具体实现时,可以使用递归或循环的方式来实现快速幂算法。在递归实现中,需要注意处理指数为负数的情况。在循环实现中,需要注意处理指数为0的情况。 取余运算可以使用%运算符来实现,其含义是两个数相除的余数。在快速幂算法中,取余运算可以避免数溢出,提高计算效率。需要注意的是,在取余运算中,除数不能为0。 综上所述,快速幂算法和取余运算是计算幂运算时常用的算法和运算符,能够提高计算效率,避免数溢出。 ### 回答2: 快速幂算法是一种优化指数运算的算法,通常用于对大整数进行多次乘方运算。该算法的基本思想是将指数拆分成二进制的形式,然后利用指数的二进制表示逐步计算。 具体来说,假设要计算a^b mod c的,其中a、b、c均为正整数,那么可以先将b转换为二进制的形式,然后从右往左遍历这个二进制数,每次将当前位的乘到结果中,同时对结果取模,然后将底数a自乘一次,且也要对结果取模。最终得到的结果就是a^b mod c的。 例如,假设要计算3^13 mod 7的,将13转换为二进制的形式得到1101,从右往左遍历这个二进制数,开始时结果为1,底数为3,当前位是1,那么将3乘到结果中,并对结果取模得到3,底数自乘得到9 mod 7 = 2;下一位是0,直接将底数自乘,即2*2 mod 7 = 4;再下一位是1,将底数自乘得到16 mod 7 = 2,同时将2乘入结果,结果为3×2 mod 7 = 6;最后一位是1,将底数自乘得到4 mod 7 = 4,同时将4乘入结果,结果为6×4 mod 7 = 3,因此3^13 mod 7的为3。 快速幂算法的优点是可以快速地计算指数运算,具有较好的时间复杂度。同时,取模运算的存在可以避免产生过多的中间结果,节省了空间复杂度。然而,快速幂算法的缺点是需要将指数转换为二进制形式,这可能会增加算法的编程难度。 ### 回答3: 快速幂是一种用于解幂运算的快速算法。在进行取余运算时,快速幂算法能够通过对结果取模,使得计算结果更为精确。在计算大数据的幂的运算时,常常可以使用快速幂的算法来进行加速运算快速幂的算法可以使用递归的方式实现,也可以使用循环的方式实现。递归实现的代码比较简单,但是存在栈空间过大的问题;循环实现的代码虽然有一定的难度,但是能够避免栈空间过大的问题。 在进行取余运算时,我们需要注意的是,如果运算的两个数都很大,那么我们在计算结果时需要特别小心。因为如果直接进行计算,可能会导致数据类型溢出,进而产生错误的结果。为了避免这种情况,我们可以在进行计算时,对结果进行取模处理。 在进行取模运算时,我们需要使用取模定理,也就是(a*b)%p=(a%p)*(b%p)%p。通过这种方式,可以使得计算结果更为精确,也可以避免数据类型溢出的情况发生。如果无法使用取模定理,则需要使用高精度的算法进行取余运算。 总而言之,快速幂算法是一种非常有效的幂运算算法,可以快速地计算出大数据的幂运算结果。在进行取余运算时,需要特别注意数据类型溢出的问题,在进行计算时需要特别小心。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值