Submit: 2520 Solved: 1524
[Submit][Status][Discuss]
Description
在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮。 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧.
Input
一行包含两个整数N,M,中间用空格分开.
Output
输出所有的方案数,由于值比较大,输出其mod 9999973
Sample Input
1 3
Sample Output
7
HINT
除了在3个格子中都放满炮的的情况外,其它的都可以.
100%的数据中N,M不超过100
50%的数据中,N,M至少有一个数不超过8
30%的数据中,N,M均不超过6
Source
每行只存在3中情况,不放,放一个棋子,放两个棋子,标准3进制状压DP
设动规数组f[i][j][k],表示前i行中,有j列有一个棋子,有k列有两个棋子
那么第i行有6种放置情况
1、不放
2、一个棋子,放到没有棋子的列
3、一个棋子,放到有一个棋子的列
4、两个棋子,都放到没有棋子的列
5、两个棋子,一个放到没有棋子的列,另一个放到有一个棋子的列
6、两个棋子,两个分别放到有一个棋子的列
第一次f[i][j][k]忘记取模爆了。。。
1 #include<iostream> 2 #include<cstdio> 3 using namespace std; 4 5 #define LL long long 6 const int mod=9999973; 7 8 LL n,m,ans; 9 LL f[105][105][105]; 10 11 LL C(LL x) 12 { 13 return x*(x-1)/2; 14 } 15 16 int main() 17 { 18 cin>>n>>m; 19 f[0][0][0]=1; 20 for(int i=1;i<=n;i++) 21 for(int j=0;j<=m;j++) 22 for(int k=0;k<=m-j;k++) 23 { 24 f[i][j][k]=f[i-1][j][k]; 25 if(j) f[i][j][k]+=f[i-1][j-1][k]*(m-j-k+1); 26 if(j+1<=m&&k) f[i][j][k]+=f[i-1][j+1][k-1]*(j+1); 27 if(j>=2) f[i][j][k]+=f[i-1][j-2][k]*C(m-j-k+2); 28 if(j&&k) f[i][j][k]+=f[i-1][j][k-1]*(m-j-k+1)*j; 29 if(j+2<=m&&k>=2)f[i][j][k]+=f[i-1][j+2][k-2]*C(j+2); 30 f[i][j][k]%=mod; 31 } 32 for(int j=0;j<=m;j++) 33 for(int k=0;k<=m-j;k++) 34 ans+=f[n][j][k]; 35 ans%=mod; 36 cout<<ans; 37 return 0; 38 }