数据库的乐观锁与悲观锁

另外两篇很好的文章:

mysql乐观锁总结和实践

mysql悲观锁总结和实践

悲观锁和乐观锁使用场景 


乐观锁是在应用层加锁,而悲观锁是在数据库层加锁(for update)

乐观锁顾名思义就是在操作时很乐观,这数据只有我在用,我先尽管用,最后发现不行时就回滚。
悲观锁在操作时很悲观,生怕数据被其他人更新掉,我就先将其先锁住,让别人用不了,我操作完成后再释放掉。
悲观锁需要数据库级别上的的实现,程序中是做不到的,如果在长事务环境中,数据会一直被锁住,导致并发性能大大地降低。
一般来说如果并发量很高的话,建议使用悲观锁,否则的话就使用乐观锁。
如果并发量很高时使用乐观锁的话,会导致很多的并发事务回滚、操作失败。
总之,冲突几率大用悲观 ,小就用乐观。

锁( locking )

业务逻辑的实现过程中,往往需要保证数据访问的排他性。如在金融系统的日终结算

处理中,我们希望针对某个 cut-off 时间点的数据进行处理,而不希望在结算进行过程中

(可能是几秒种,也可能是几个小时),数据再发生变化。此时,我们就需要通过一些机

制来保证这些数据在某个操作过程中不会被外界修改,这样的机制,在这里,也就是所谓

的 “ 锁 ” ,即给我们选定的目标数据上锁,使其无法被其他程序修改。

Hibernate 支持两种锁机制:即通常所说的 “ 悲观锁( Pessimistic Locking ) ”

和 “ 乐观锁( Optimistic Locking ) ” 。

悲观锁( Pessimistic Locking )

悲观锁,正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自

外部系统的事务处理)修改持保守态度,因此,在整个数据处理过程中,将数据处于锁定

状态。悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能

真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,也无法保证外部系

统不会修改数据)。

一个典型的倚赖数据库的悲观锁调用:

select * from account where name=”Erica” for update

这条 sql 语句锁定了 account 表中所有符合检索条件( name=”Erica” )的记录。

本次事务提交之前(事务提交时会释放事务过程中的锁),外界无法修改这些记录。

Hibernate 的悲观锁,也是基于数据库的锁机制实现。

注意,只有在查询开始之前(也就是 Hiberate 生成 SQL 之前)设定加锁,才会

真正通过数据库的锁机制进行加锁处理,否则,数据已经通过不包含 for update

子句的 Select SQL 加载进来,所谓数据库加锁也就无从谈起。

乐观锁( Optimistic Locking )

相对悲观锁而言,乐观锁机制采取了更加宽松的加锁机制。悲观锁大多数情况下依

靠数据库的锁机制实现,以保证操作最大程度的独占性。但随之而来的就是数据库

性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。

如一个金融系统,当某个操作员读取用户的数据,并在读出的用户数据的基础上进

行修改时(如更改用户帐户余额),如果采用悲观锁机制,也就意味着整个操作过

程中(从操作员读出数据、开始修改直至提交修改结果的全过程,甚至还包括操作

员中途去煮咖啡的时间),数据库记录始终处于加锁状态,可以想见,如果面对几

百上千个并发,这样的情况将导致怎样的后果。

乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本

( Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于

数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version” 字段来

实现。

读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提

交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据

版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。

对于上面修改用户帐户信息的例子而言,假设数据库中帐户信息表中有一个

version 字段,当前值为 1 ;而当前帐户余额字段( balance )为 $100 。

1 操作员 A 此时将其读出( version=1 ),并从其帐户余额中扣除 $50

( $100-$50 )。

2 在操作员 A 操作的过程中,操作员 B 也读入此用户信息( version=1 ),并

从其帐户余额中扣除 $20 ( $100-$20 )。

3 操作员 A 完成了修改工作,将数据版本号加一( version=2 ),连同帐户扣

除后余额( balance=$50 ),提交至数据库更新,此时由于提交数据版本大

于数据库记录当前版本,数据被更新,数据库记录 version 更新为 2 。

4 操作员 B 完成了操作,也将版本号加一( version=2 )试图向数据库提交数

据( balance=$80 ),但此时比对数据库记录版本时发现,操作员 B 提交的

数据版本号为 2 ,数据库记录当前版本也为 2 ,不满足 “ 提交版本必须大于记

录当前版本才能执行更新 “ 的乐观锁策略,因此,操作员 B 的提交被驳回。

这样,就避免了操作员 B 用基于 version=1 的旧数据修改的结果覆盖操作

员 A 的操作结果的可能。

从上面的例子可以看出,乐观锁机制避免了长事务中的数据库加锁开销(操作员 A

和操作员 B 操作过程中,都没有对数据库数据加锁),大大提升了大并发量下的系

统整体性能表现。

需要注意的是,乐观锁机制往往基于系统中的数据存储逻辑,因此也具备一定的局

限性,如在上例中,由于乐观锁机制是在我们的系统中实现,来自外部系统的用户

余额更新操作不受我们系统的控制,因此可能会造成脏数据被更新到数据库中。在

系统设计阶段,我们应该充分考虑到这些情况出现的可能性,并进行相应调整(如

将乐观锁策略在数据库存储过程中实现,对外只开放基于此存储过程的数据更新途

径,而不是将数据库表直接对外公开)。

展开阅读全文

没有更多推荐了,返回首页