- 博客(16)
- 收藏
- 关注
原创 天池热身赛——心跳信号模型融合
代码来源于Datawhale开源社区。关于模型融合模型融合是比赛后期一个重要的环节,大体来说有如下的类型方式。一、简单加权融合:对于回归问题,可以使用算术平均融合,几何平均融合;对于分类问题,可以使用投票的方法;二、构建多层模型即通过拟合多个模型,再分别预测出结果,再将结果做简单的算术融合。常见的方法有Stacking融合,具体过程可以参考这篇blog,讲得很清楚!三、boosting/bagging即通过集成学习的方法,提升准确率。代码实践其实模型融合的原理并不难,因此可以直接上代码
2021-03-28 23:32:56 175
原创 天池热身赛——心跳信号建模与调参
根据Datawhale给的参考代码与自己的习惯,一般首先会选择合适的模型,接着调整数据集的划分方式,最后调整参数。模型选择随着近几年集成学习的发展,越来越多人在竞赛中会选择集成学习训练模型,而在实际中使用集成学习所得的结果也确实会优于传统的模型,对此我们可以使用模型进行验证。根据Datawhale所提供的课件,分别对逻辑回归模型、决策树模型和LightGBM模型进行验证。为了较为准确的量化模型的泛化能力,首先将数据集拆分为训练集和测试集,测试集不参与所有的模型的训练。逻辑回归模型首先训练逻辑回归模
2021-03-25 21:30:49 231
原创 天池热身赛——心跳信号特征工程
Baseline来源于DataWhale开源社区。库的准备对于心跳信号的特征工程,主要按照时间序列的处理方式进行处理,期中这里运用到的第三方库为tsfresh。这个库的安装有点曲折,首先在cmd中用pip的方式安装一直出现报错,报错的语句为ERROR:Cannot uninstall ‘llvmlite’, It is a distutils…随后参考这篇blog的方法,找到对应文件将其删除后就完美安装了。但接着在导入过程中再次报错,报错大致内容是关于 cannot import name 'fa
2021-03-22 22:18:54 158
原创 天池热身赛——心跳信号分类预测探索性数据分析
代码来源于DataWhale开源社区。库的准备import warningswarnings.filterwarnings('ignore')import missingno as msnoimport pandas as pdfrom pandas import DataFrameimport matplotlib.pyplot as plt import seaborn as snsimport numpy as np导入数据导入训练集与测试集import pandas as
2021-03-19 17:11:32 162
原创 天池热身赛——心跳信号分类预测baseline实现
天池热身赛——心跳信号分类预测baseline实现Baseline来源于DataWhale开源社区。一、库的准备Baseline主要涉及集成学习,因此需要用到xgboost、lightgbm和catboost库。前两个库的安装很顺利,在cmd中用pip就可以直接安装。但在安装catboost失败了两次,后来换了一种方法安装就安装成功了,这里参考了这篇博客:安装 catboost 的正确方式import osimport gcimport mathimport pandas as pdimp
2021-03-15 19:33:56 465 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人