自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 记录贴:运行swin遇到assert palette.shape[0] == len(self.CLASSES)

swinbug记录

2023-03-11 16:22:53 569 3

原创 使用numpy实现神经网络

课程作业,仅作记录。

2023-03-09 13:07:13 245

原创 【论文阅读笔记】对比学习与语义分割

【论文阅读笔记】对比学习与语义分割

2022-10-23 23:42:55 1010 1

原创 【论文阅读】CVPR2022——TransRAC

【论文阅读】CVPR2022——TransRAC

2022-10-14 18:39:04 922 1

原创 记录贴:pytorch学习Part5

Pytorch学习记录贴

2022-08-08 15:42:03 157

原创 记录贴:pytorch学习Part4

Pytorch学习记录贴

2022-08-07 14:00:31 289

原创 记录贴:pytorch学习Part3

Pytorch学习记录贴

2022-08-06 00:45:32 286

原创 记录贴:pytorch学习Part2

Pytorch学习记录贴

2022-08-05 16:34:02 105

原创 记录贴:pytorch学习Part1

pytorch学习记录贴

2022-08-04 23:11:43 130

原创 记录贴:pycharm远程连接实现Yolov5

Pycharm远程连接实现Yolov5

2022-01-03 14:53:53 869

原创 记录贴:运行Yolov5过程及遇到的问题

个人记录贴,Yolov5实现以及bug

2022-01-01 23:34:09 4272 9

原创 天池热身赛——心跳信号模型融合

代码来源于Datawhale开源社区。关于模型融合模型融合是比赛后期一个重要的环节,大体来说有如下的类型方式。一、简单加权融合:对于回归问题,可以使用算术平均融合,几何平均融合;对于分类问题,可以使用投票的方法;二、构建多层模型即通过拟合多个模型,再分别预测出结果,再将结果做简单的算术融合。常见的方法有Stacking融合,具体过程可以参考这篇blog,讲得很清楚!三、boosting/bagging即通过集成学习的方法,提升准确率。代码实践其实模型融合的原理并不难,因此可以直接上代码

2021-03-28 23:32:56 175

原创 天池热身赛——心跳信号建模与调参

根据Datawhale给的参考代码与自己的习惯,一般首先会选择合适的模型,接着调整数据集的划分方式,最后调整参数。模型选择随着近几年集成学习的发展,越来越多人在竞赛中会选择集成学习训练模型,而在实际中使用集成学习所得的结果也确实会优于传统的模型,对此我们可以使用模型进行验证。根据Datawhale所提供的课件,分别对逻辑回归模型、决策树模型和LightGBM模型进行验证。为了较为准确的量化模型的泛化能力,首先将数据集拆分为训练集和测试集,测试集不参与所有的模型的训练。逻辑回归模型首先训练逻辑回归模

2021-03-25 21:30:49 231

原创 天池热身赛——心跳信号特征工程

Baseline来源于DataWhale开源社区。库的准备对于心跳信号的特征工程,主要按照时间序列的处理方式进行处理,期中这里运用到的第三方库为tsfresh。这个库的安装有点曲折,首先在cmd中用pip的方式安装一直出现报错,报错的语句为ERROR:Cannot uninstall ‘llvmlite’, It is a distutils…随后参考这篇blog的方法,找到对应文件将其删除后就完美安装了。但接着在导入过程中再次报错,报错大致内容是关于 cannot import name 'fa

2021-03-22 22:18:54 158

原创 天池热身赛——心跳信号分类预测探索性数据分析

代码来源于DataWhale开源社区。库的准备import warningswarnings.filterwarnings('ignore')import missingno as msnoimport pandas as pdfrom pandas import DataFrameimport matplotlib.pyplot as plt import seaborn as snsimport numpy as np导入数据导入训练集与测试集import pandas as

2021-03-19 17:11:32 162

原创 天池热身赛——心跳信号分类预测baseline实现

天池热身赛——心跳信号分类预测baseline实现Baseline来源于DataWhale开源社区。一、库的准备Baseline主要涉及集成学习,因此需要用到xgboost、lightgbm和catboost库。前两个库的安装很顺利,在cmd中用pip就可以直接安装。但在安装catboost失败了两次,后来换了一种方法安装就安装成功了,这里参考了这篇博客:安装 catboost 的正确方式import osimport gcimport mathimport pandas as pdimp

2021-03-15 19:33:56 465 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除