一、什么是机器学习?
机器学习指的是让计算机像人类一样,通过经验数据和算法自动学习和改进的过程。比如训练一个AI模型进行游戏闯关、判断一个图片中的动物是猫还是狗。
二、分类
机器学习可以分为有监督学习、无监督学习。
有监督学习:具有真实数据标注的实习,例如图片分类场景下,事先标记图片中的是猫还是狗。
无监督学习:不需要知道数据的类别或标签,而是通过数据本身的特征进行学习和分析,例如常见的聚类分析方法。
三、数据的输入
输入的数据可以分为训练数据、验证数据和测试数据:
- 训练数据:用于训练机器模型,通过学习训练数据中的模式和规律,来调整自身的参数。
- 验证数据:用于在模型训练过程中评估模型的性能,并进行超参数调整,以避免过拟合或欠拟合。
- 测试数据:验证模型在未知数据上的泛化能力。
四、神经网络
在机器学习中,神经网络是一个很重要的概念,通过模拟人脑中信息在神经元中的传递方式,利用权重将不同的神经元进行连接。通过调整这些参数即权重,可以学习输入数据和输出数据之间的复杂关系。