1 绪论
消息: 通信系统传输对象, 信息的载体和物理表现形式.
信息: 消息的有效内容和内涵.
信号: 消息的传输载体.
模拟通信: 信源
→
\to
→ 调制器
→
\to
→ 信道(噪声)
→
\to
→ 解调器
→
\to
→ 信宿.
数字通信: 信源
→
\to
→ 信源编码(压缩+数字化)
→
\to
→ 加密
→
\to
→ 信道编码(差错控制+信道复用)
→
\to
→ 数字调制(信息载波)
→
\to
→ 信道(噪声+干扰)
→
\to
→ 数字解调(已调信号卸载信息)
→
\to
→ 信道译码(最佳接收)
→
\to
→ 解密
→
\to
→ 信源译码
→
\to
→ 信宿; 同步.
优点: 抗干扰能力强, 噪声不积累; 传输差错可控; 便于处理, 变换, 存储; 便于复用; 易于集成; 易于加密.
缺点: 需要较大的传输带宽; 对同步要求高.
信道信号特征: 模拟(连续); 数字(离散).
传输方式: 基带(未调制数字信号); 带通(已调信号).
复用方式: 频分; 时分; 码分; 波分; 空分.
传输方向和时间: 单工; 半双工; 全双工.
信息量:
I
(
x
)
=
−
log
p
(
x
)
I(x)=-\log p(x)
I(x)=−logp(x); 底
2
2
2 为比特(bit),
e
e
e 为奈特(nat),
10
10
10 为哈特莱(Hartley).
信息熵(平均信息量):
H
(
X
)
=
−
∫
−
∞
+
∞
f
(
x
)
log
f
(
x
)
d
x
H(X)=-\int_{-\infty}^{+\infty}f(x)\log f(x)\mathrm{d}x
H(X)=−∫−∞+∞f(x)logf(x)dx.
性能指标: 有效性 - 传输带宽/频带利用率; 可靠性 - 输出信噪比/差错概率.
传输速率: 波特率(码元)
R
B
=
1
T
B
R_B=\frac{1}{T_B}
RB=TB1 (Baud); 比特率(信息)
R
b
=
R
B
H
R_b=R_BH
Rb=RBH (
M
M
M 进制等概率时)
=
R
B
log
M
=R_B\log M
=RBlogM (bps).
频带利用率:
η
=
R
B
B
\eta=\frac{R_B}{B}
η=BRB (Baud/Hz);
η
b
=
R
b
B
\eta_b=\frac{R_b}{B}
ηb=BRb (bps/Hz).
误码率
P
e
P_e
Pe; 误信率(误比特率)
P
b
P_b
Pb;
2
2
2 进制时
P
b
=
P
e
P_b=P_e
Pb=Pe;
M
>
2
M>2
M>2 进制时
P
b
<
P
e
P_b<P_e
Pb<Pe.
卷积定理: f ( t ) ↔ F ( ω ) f(t)\leftrightarrow F(\omega) f(t)↔F(ω), g ( t ) ↔ G ( ω ) ⟹ f ( t ) ∗ g ( t ) ↔ F ( ω ) G ( ω ) g(t)\leftrightarrow G(\omega)\implies f(t)*g(t)\leftrightarrow F(\omega)G(\omega) g(t)↔G(ω)⟹f(t)∗g(t)↔F(ω)G(ω), f ( t ) g ( t ) ↔ 1 2 π F ( ω ) ∗ G ( ω ) f(t)g(t)\leftrightarrow \frac{1}{2\pi}F(\omega)*G(\omega) f(t)g(t)↔2π1F(ω)∗G(ω); ω = 2 π f \omega=2\pi f ω=2πf.
f ( t ) f(t) f(t) | F ( ω ) F(\omega) F(ω) | f ( t ) f(t) f(t) | F ( ω ) F(\omega) F(ω) |
---|---|---|---|
δ ( t ) \delta(t) δ(t) | 1 1 1 | r e c t ( t τ ) {\rm rect}(\frac{t}{\tau}) rect(τt) | τ S a ( ω τ 2 ) \tau{\rm Sa}(\frac{\omega\tau}{2}) τSa(2ωτ) |
1 1 1 | 2 π δ ( ω ) 2\pi\delta(\omega) 2πδ(ω) | W 2 π S a ( W t 2 ) \frac{W}{2\pi}{\rm Sa}(\frac{Wt}{2}) 2πWSa(2Wt) | r e c t ( ω W ) {\rm rect}(\frac{\omega}{W}) rect(Wω) |
e j ω 0 t e^{j\omega_0t} ejω0t | 2 π δ ( ω − ω 0 ) 2\pi\delta(\omega-\omega_0) 2πδ(ω−ω0) | cos ( ω 0 t ) \cos(\omega_0t) cos(ω0t) | π [ δ ( ω + ω 0 ) + δ ( ω − ω 0 ) ] \pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)] π[δ(ω+ω0)+δ(ω−ω0)] |
s g n ( t ) {\rm sgn}(t) sgn(t) | 2 j ω \frac{2}{j\omega} jω2 | sin ( ω 0 t ) \sin(\omega_0t) sin(ω0t) | π j [ δ ( ω + ω 0 ) − δ ( ω + ω 0 ) ] \pi j[\delta(\omega+\omega_0)-\delta(\omega+\omega_0)] πj[δ(ω+ω0)−δ(ω+ω0)] |
j π t \frac{j}{\pi t} πtj | s g n ( ω ) {\rm sgn}(\omega) sgn(ω) | e − α ∣ t ∣ e^{-\alpha|t|} e−α∣t∣ | 2 α α 2 + ω 2 \frac{2\alpha}{\alpha^2+\omega^2} α2+ω22α |
u ( t ) u(t) u(t) | π δ ( ω ) + 1 j ω \pi\delta(\omega)+\frac{1}{j\omega} πδ(ω)+jω1 | u ( t ) e − α t u(t)e^{-\alpha t} u(t)e−αt | 1 α + j ω \frac{1}{\alpha+j\omega} α+jω1 |
δ T ( t ) = ∑ − ∞ + ∞ δ ( t − n T 0 ) \delta_T(t)=\sum_{-\infty}^{+\infty}\delta(t-nT_0) δT(t)=∑−∞+∞δ(t−nT0) | ω 0 ∑ − ∞ + ∞ δ ( ω − n ω 0 ) \omega_0\sum_{-\infty}^{+\infty}\delta(\omega-n\omega_0) ω0∑−∞+∞δ(ω−nω0) | u ( t ) t e − α t u(t)te^{-\alpha t} u(t)te−αt | 1 ( α + j ω ) 2 \frac{1}{(\alpha+j\omega)^2} (α+jω)21 |
A t 0 ( t 0 2 − ∣ τ ∣ ) \frac{A}{t_0}(t_0^2-|\tau|) t0A(t02−∣τ∣) | A t 0 S a 2 ω t 0 2 At_0{\rm Sa}^2\frac{\omega t_0}{2} At0Sa22ωt0 |
冲激信号:
∫
−
∞
+
∞
δ
(
t
)
d
t
=
1
\int_{-\infty}^{+\infty}\delta(t)\mathrm{d}t=1
∫−∞+∞δ(t)dt=1,
δ
(
t
)
=
0
(
t
≠
0
)
\delta(t)=0\ (t\ne 0)
δ(t)=0 (t=0);
Δ
(
f
)
=
1
\Delta(f)=1
Δ(f)=1.
单位阶跃函数:
u
(
t
)
=
0
,
t
<
0
;
1
,
t
≥
0
u(t)=0,\ t<0;\ 1,\ t\geq 0
u(t)=0, t<0; 1, t≥0;
u
′
(
t
)
=
δ
(
t
)
u'(t)=\delta(t)
u′(t)=δ(t).
抽样函数:
f
(
t
0
)
=
∫
−
∞
+
∞
f
(
t
)
δ
(
t
−
t
0
)
d
t
f(t_0)=\int_{-\infty}^{+\infty}f(t)\delta(t-t_0)\mathrm{d}t
f(t0)=∫−∞+∞f(t)δ(t−t0)dt, 其中
f
(
t
)
f(t)
f(t) 在
t
0
t_0
t0 处连续.
采样函数:
S
a
(
t
)
=
s
i
n
c
(
t
)
=
sin
t
t
{\rm Sa}(t)={\rm sinc}(t)=\frac{\sin t}{t}
Sa(t)=sinc(t)=tsint;
δ
(
t
)
=
lim
t
→
∞
k
π
S
a
(
k
t
)
\delta(t)=\lim_{t\to\infty}\frac{k}{\pi}{\rm Sa}(kt)
δ(t)=limt→∞πkSa(kt).
冲激响应:
h
(
t
)
h(t)
h(t); 输入单位冲激信号的零状态响应.
频率响应:
h
(
t
)
↔
H
(
f
)
h(t)\leftrightarrow H(f)
h(t)↔H(f).
能量
E
=
∫
−
∞
+
∞
s
2
(
t
)
d
t
E=\int_{-\infty}^{+\infty}s^2(t)\mathrm{d}t
E=∫−∞+∞s2(t)dt; 平均功率
P
=
lim
T
→
∞
1
T
∫
−
T
2
T
2
s
2
(
t
)
d
t
P=\lim_{T\to\infty}\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}s^2(t)\mathrm{d}t
P=limT→∞T1∫−2T2Ts2(t)dt.
能量信号:
0
<
E
<
+
∞
0<E<+\infty
0<E<+∞ 即
P
=
0
P=0
P=0.
功率信号:
0
<
P
<
+
∞
0<P<+\infty
0<P<+∞ 即
E
→
+
∞
E\to+\infty
E→+∞.
周期信号:
s
(
t
)
=
s
(
t
+
T
)
s(t)=s(t+T)
s(t)=s(t+T); 必为功率信号.
能量信号频谱密度/连续谱:
S
(
f
)
=
∫
−
∞
+
∞
s
(
t
)
e
−
2
π
j
f
t
d
t
S(f)=\int_{-\infty}^{+\infty}s(t)e^{-2\pi jft}\mathrm{d}t
S(f)=∫−∞+∞s(t)e−2πjftdt; Fourier 变换; 单位 V/Hz.
能量谱密度:
G
(
f
)
=
∣
S
(
f
)
∣
2
G(f)=|S(f)|^2
G(f)=∣S(f)∣2.
能量(Parseval):
E
=
∫
−
∞
+
∞
s
2
(
t
)
d
t
=
∫
−
∞
+
∞
G
(
f
)
d
f
E=\int_{-\infty}^{+\infty}s^2(t)\mathrm{d}t=\int_{-\infty}^{+\infty}G(f)\mathrm{d}f
E=∫−∞+∞s2(t)dt=∫−∞+∞G(f)df; 实信号时
E
=
2
∫
0
+
∞
G
(
f
)
d
f
E=2\int_0^{+\infty}G(f)\mathrm{d}f
E=2∫0+∞G(f)df.
自相关函数:
R
(
τ
)
=
∫
−
∞
+
∞
s
(
t
)
s
(
t
+
τ
)
d
t
R(\tau)=\int_{-\infty}^{+\infty}s(t)s(t+\tau)\mathrm{d}t
R(τ)=∫−∞+∞s(t)s(t+τ)dt;
R
(
−
τ
)
=
R
(
τ
)
R(-\tau)=R(\tau)
R(−τ)=R(τ),
R
(
0
)
=
E
R(0)=E
R(0)=E;
R
(
τ
)
↔
∣
S
(
f
)
∣
2
=
G
(
f
)
R(\tau)\leftrightarrow |S(f)|^2=G(f)
R(τ)↔∣S(f)∣2=G(f).
互相关函数:
R
12
(
τ
)
=
∫
−
∞
+
∞
s
1
(
t
)
s
2
(
t
+
τ
)
d
t
R_{12}(\tau)=\int_{-\infty}^{+\infty}s_1(t)s_2(t+\tau)\mathrm{d}t
R12(τ)=∫−∞+∞s1(t)s2(t+τ)dt;
R
21
(
τ
)
=
R
12
(
−
τ
)
R_{21}(\tau)=R_{12}(-\tau)
R21(τ)=R12(−τ);
R
12
(
τ
)
↔
S
1
∗
(
f
)
S
2
(
f
)
=
S
12
(
f
)
R_{12}(\tau)\leftrightarrow S_1^*(f)S_2(f)=S_{12}(f)
R12(τ)↔S1∗(f)S2(f)=S12(f);
S
12
(
f
)
S_{12}(f)
S12(f) 为互能量谱密度.
功率信号频谱/离散谱:
C
n
=
1
T
∫
−
T
2
T
2
e
−
2
π
j
n
f
t
s
(
t
)
d
t
C_n=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}e^{-2\pi jnft}s(t)\mathrm{d}t
Cn=T1∫−2T2Te−2πjnfts(t)dt; Fourier 级数;
C
(
n
f
)
:
=
C
n
C(nf):=C_n
C(nf):=Cn 为复振幅, 模长为振幅, 角度为初相;
f
f
f 为基频,
n
f
nf
nf 为谐频; 单位 V.
周期信号:
s
(
t
)
=
∑
n
=
−
∞
+
∞
C
n
e
2
π
j
n
f
t
,
f
=
1
T
s(t)=\sum_{n=-\infty}^{+\infty}C_ne^{2\pi jnft},\ f=\frac{1}{T}
s(t)=∑n=−∞+∞Cne2πjnft, f=T1; Fourier 级数.
离散功率谱:
P
=
1
T
0
∫
−
T
0
2
T
0
2
s
2
(
t
)
d
t
=
∑
−
∞
+
∞
∣
C
n
∣
2
P=\frac{1}{T_0}\int^\frac{T_0}{2}_{-\frac{T_0}{2}}s^2(t)\mathrm{d}t=\sum^{+\infty}_{-\infty}|C_n|^2
P=T01∫−2T02T0s2(t)dt=∑−∞+∞∣Cn∣2.
连续功率谱/功率谱密度:
P
(
f
)
=
∑
−
∞
+
∞
∣
C
(
f
)
∣
2
δ
(
f
−
n
f
0
)
P(f)=\sum^{+\infty}_{-\infty}|C(f)|^2\delta(f-nf_0)
P(f)=∑−∞+∞∣C(f)∣2δ(f−nf0).
功率:
P
=
∫
−
∞
+
∞
P
(
f
)
d
f
P=\int_{-\infty}^{+\infty}P(f)\mathrm{d}f
P=∫−∞+∞P(f)df.
自相关函数:
R
(
τ
)
=
lim
T
→
∞
1
T
∫
−
T
2
T
2
s
(
t
)
s
(
t
+
τ
)
d
t
R(\tau)=\lim_{T\to\infty}\frac{1}{T}\int_{-\frac{T}{2}}^\frac{T}{2}s(t)s(t+\tau)\mathrm{d}t
R(τ)=limT→∞T1∫−2T2Ts(t)s(t+τ)dt;
R
(
−
τ
)
=
R
(
τ
)
R(-\tau)=R(\tau)
R(−τ)=R(τ),
R
(
0
)
=
P
R(0)=P
R(0)=P;
R
(
τ
)
↔
P
(
f
)
R(\tau)\leftrightarrow P(f)
R(τ)↔P(f).
特别为周期信号时
R
(
τ
)
↔
P
(
f
)
R(\tau)\leftrightarrow P(f)
R(τ)↔P(f).
互相关函数:
R
12
(
τ
)
=
lim
T
→
∞
1
T
∫
−
T
2
T
2
s
1
(
t
)
s
2
(
t
+
τ
)
d
t
R_{12}(\tau)=\lim_{T\to\infty}\frac{1}{T}\int_{-\frac{T}{2}}^\frac{T}{2}s_1(t)s_2(t+\tau)\mathrm{d}t
R12(τ)=limT→∞T1∫−2T2Ts1(t)s2(t+τ)dt;
R
21
(
τ
)
=
R
12
(
−
τ
)
R_{21}(\tau)=R_{12}(-\tau)
R21(τ)=R12(−τ).
同周期时:
R
12
(
τ
)
=
1
T
∫
−
T
2
T
2
s
1
(
t
)
s
2
(
t
+
τ
)
d
t
R_{12}(\tau)=\frac{1}{T}\int_{-\frac{T}{2}}^\frac{T}{2}s_1(t)s_2(t+\tau)\mathrm{d}t
R12(τ)=T1∫−2T2Ts1(t)s2(t+τ)dt.
随机过程: 样本函数的集合; 随机变量的时间函数.
n
n
n 维分布函数:
F
n
(
{
x
1
}
i
=
1
n
;
{
t
i
}
t
=
1
n
)
=
P
{
{
ξ
(
t
i
)
≤
x
i
}
i
=
1
n
}
F_n(\{x_1\}_{i=1}^n;\ \{t_i\}_{t=1}^n)=P\{\{\xi(t_i)\leq x_i\}_{i=1}^n\}
Fn({x1}i=1n; {ti}t=1n)=P{{ξ(ti)≤xi}i=1n}.
n
n
n 维概率密度函数:
f
n
(
{
x
1
}
i
=
1
n
;
{
t
i
}
t
=
1
n
)
=
∂
F
n
(
{
x
1
}
i
=
1
n
;
{
t
i
}
t
=
1
n
)
∏
i
=
1
n
∂
x
i
f_n(\{x_1\}_{i=1}^n;\ \{t_i\}_{t=1}^n)=\frac{\partial F_n(\{x_1\}_{i=1}^n;\ \{t_i\}_{t=1}^n)}{\prod_{i=1}^n\partial x_i}
fn({x1}i=1n; {ti}t=1n)=∏i=1n∂xi∂Fn({x1}i=1n; {ti}t=1n).
数学期望(统计平均):
E
[
ξ
(
t
)
]
:
=
∫
−
∞
+
∞
x
f
1
(
x
,
t
)
d
x
:
=
a
(
t
)
E[\xi(t)]:=\int_{-\infty}^{+\infty}xf_1(x,t)\mathrm{d}x:=a(t)
E[ξ(t)]:=∫−∞+∞xf1(x,t)dx:=a(t).
方差:
D
[
ξ
(
t
)
]
:
=
E
[
ξ
(
t
)
−
a
(
t
)
]
2
=
E
[
ξ
2
(
t
)
]
−
a
2
(
t
)
D[\xi(t)]:=E[\xi(t)-a(t)]^2=E[\xi^2(t)]-a^2(t)
D[ξ(t)]:=E[ξ(t)−a(t)]2=E[ξ2(t)]−a2(t).
自相关函数:
R
(
t
1
,
t
2
)
:
=
E
[
ξ
(
t
1
)
ξ
(
t
2
)
]
R(t_1,t_2):=E[\xi(t_1)\xi(t_2)]
R(t1,t2):=E[ξ(t1)ξ(t2)].
互相关函数:
R
ξ
η
(
t
1
,
t
2
)
:
=
E
[
ξ
(
t
1
)
η
(
t
2
)
]
R_{\xi\eta}(t_1,t_2):=E[\xi(t_1)\eta(t_2)]
Rξη(t1,t2):=E[ξ(t1)η(t2)].
协方差:
B
(
t
1
,
t
2
)
:
=
E
[
ξ
(
t
1
)
−
a
(
t
1
)
]
[
ξ
(
t
2
)
−
a
(
t
2
)
]
=
R
(
t
1
,
t
2
)
−
a
(
t
1
)
a
(
t
2
)
B(t_1,t_2):=E[\xi(t_1)-a(t_1)][\xi(t_2)-a(t_2)]=R(t_1,t_2)-a(t_1)a(t_2)
B(t1,t2):=E[ξ(t1)−a(t1)][ξ(t2)−a(t2)]=R(t1,t2)−a(t1)a(t2).
严格平稳: 一维分布和概率密度时间无关, 二维分布只与时间间隔
τ
\tau
τ 有关.
广义平稳: 均值与时间无关
E
[
ξ
(
t
)
]
=
a
E[\xi(t)]=a
E[ξ(t)]=a, 自相关函数只与时间间隔有关
R
(
t
1
,
t
2
)
=
R
(
τ
)
R(t_1,t_2)=R(\tau)
R(t1,t2)=R(τ).
各态遍历性/历经性: 平稳且时间平均等于统计平均
a
=
a
ˉ
:
=
x
(
t
)
‾
:
=
lim
T
→
∞
1
T
∫
−
T
2
T
2
x
(
t
)
d
t
a=\bar{a}:=\overline{x(t)}:=\lim_{T\to\infty}\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)\mathrm{d}t
a=aˉ:=x(t):=limT→∞T1∫−2T2Tx(t)dt,
R
(
τ
)
=
R
(
τ
)
‾
:
=
x
(
t
)
x
(
t
+
τ
)
‾
:
=
lim
T
→
∞
1
T
∫
−
T
2
T
2
x
(
t
)
x
(
t
+
τ
)
d
t
R(\tau)=\overline{R(\tau)}:=\overline{x(t)x(t+\tau)}:=\lim_{T\to\infty}\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)x(t+\tau)\mathrm{d}t
R(τ)=R(τ):=x(t)x(t+τ):=limT→∞T1∫−2T2Tx(t)x(t+τ)dt.
自相关函数:
R
(
τ
)
=
E
[
ξ
(
t
)
ξ
(
t
+
ξ
)
]
R(\tau)=E[\xi(t)\xi(t+\xi)]
R(τ)=E[ξ(t)ξ(t+ξ)];
R
(
τ
)
=
R
(
−
τ
)
R(\tau)=R(-\tau)
R(τ)=R(−τ);
∣
R
(
τ
)
∣
≤
R
(
0
)
=
E
[
ξ
2
(
t
)
]
|R(\tau)|\leq R(0)=E[\xi^2(t)]
∣R(τ)∣≤R(0)=E[ξ2(t)] 平均功率和上界;
R
(
∞
)
=
E
2
[
ξ
(
t
)
]
=
a
2
R(\infty)=E^2[\xi(t)]=a^2
R(∞)=E2[ξ(t)]=a2 直流功率;
R
(
0
)
−
R
(
∞
)
=
σ
2
R(0)-R(\infty)=\sigma^2
R(0)−R(∞)=σ2 交流功率(方差).
功率谱密度: 所有样本功率谱的统计平均
P
ξ
(
f
)
:
=
E
[
P
f
(
f
)
]
=
lim
T
→
∞
E
[
F
T
(
f
)
]
2
T
P_\xi(f):=E[P_f(f)]=\lim_{T\to\infty}\frac{E[F_T(f)]^2}{T}
Pξ(f):=E[Pf(f)]=limT→∞TE[FT(f)]2;
P
ξ
(
f
)
≥
0
P_\xi(f)\geq 0
Pξ(f)≥0,
P
ξ
(
−
f
)
=
P
ξ
(
f
)
P_\xi(-f)=P_\xi(f)
Pξ(−f)=Pξ(f),
R
(
0
)
=
∫
−
∞
+
∞
P
ξ
(
f
)
d
f
R(0)=\int_{-\infty}^{+\infty}P_\xi(f)\mathrm{d}f
R(0)=∫−∞+∞Pξ(f)df.
Wiener-Khinchine:
R
(
τ
)
↔
P
ξ
(
f
)
R(\tau)\leftrightarrow P_\xi(f)
R(τ)↔Pξ(f).
Gauss:
n
n
n 维分布只依赖于各项均值, 方差, 归一化协方差; 广义平稳时严格平稳; 不同时刻不相关时统计独立; 线性变换后仍为 Gauss 过程.
概率密度函数:
f
(
x
)
=
1
2
π
σ
exp
{
−
(
x
−
a
)
2
2
σ
2
}
f(x)=\frac{1}{\sqrt{2\pi}\sigma}\exp\{-\frac{(x-a)^2}{2\sigma^2}\}
f(x)=2πσ1exp{−2σ2(x−a)2};
f
(
a
+
x
)
=
f
(
a
−
x
)
f(a+x)=f(a-x)
f(a+x)=f(a−x);
∫
−
∞
a
f
(
x
)
d
x
=
∫
a
+
∞
f
(
x
)
d
x
=
1
2
\int_{-\infty}^a f(x)\mathrm{d}x=\int_a^{+\infty} f(x)\mathrm{d}x=\frac{1}{2}
∫−∞af(x)dx=∫a+∞f(x)dx=21.
误差函数:
e
r
f
(
x
)
=
2
π
∫
0
x
e
−
t
2
d
t
{\rm erf}(x)=\frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2}\mathrm{d}t
erf(x)=π2∫0xe−t2dt;
e
r
f
(
0
)
=
0
{\rm erf}(0)=0
erf(0)=0,
e
r
f
(
+
∞
)
=
1
{\rm erf}(+\infty)=1
erf(+∞)=1,
e
r
f
(
−
x
)
=
−
e
r
f
(
x
)
{\rm erf}(-x)=-{\rm erf}(x)
erf(−x)=−erf(x), 单调递增;
x
≪
1
x\ll 1
x≪1 时
e
r
f
(
x
)
≈
2
x
π
{\rm erf}(x)\approx\frac{2x}{\sqrt{\pi}}
erf(x)≈π2x.
补误差函数:
e
r
f
c
(
x
)
=
1
−
e
r
f
(
x
)
{\rm erfc}(x)=1-{\rm erf}(x)
erfc(x)=1−erf(x);
x
≫
1
x\gg 1
x≫1 时
e
r
f
c
(
x
)
≈
e
−
2
x
2
x
π
{\rm erfc}(x)\approx\frac{e^{-2x^2}}{x\sqrt{\pi}}
erfc(x)≈xπe−2x2.
分布函数:
F
(
x
)
=
1
2
+
1
2
e
r
f
(
x
−
a
2
σ
)
F(x)=\frac{1}{2}+\frac{1}{2}{\rm erf}(\frac{x-a}{\sqrt{2}\sigma})
F(x)=21+21erf(2σx−a).
线性系统 | 输入 | 输出 |
---|---|---|
时域 | ν i ( t ) \nu_i(t) νi(t) | 卷积 ν o ( t ) = ν i ( t ) ∗ h ( t ) : = ∫ − ∞ + ∞ ν i ( τ ) h ( t − τ ) d τ \nu_o(t)=\nu_i(t)*h(t):=\int_{-\infty}^{+\infty}\nu_i(\tau)h(t-\tau)\mathrm{d}\tau νo(t)=νi(t)∗h(t):=∫−∞+∞νi(τ)h(t−τ)dτ |
频域 | V i ( f ) V_i(f) Vi(f) | V o ( f ) = H ( f ) V i ( f ) V_o(f)=H(f)V_i(f) Vo(f)=H(f)Vi(f) |
概率分布 | 平稳/高斯 | 平稳/高斯 |
数学期望 | E [ ξ i ( t ) ] = a E[\xi_i(t)]=a E[ξi(t)]=a | $E[\xi_0(t)]=aH(0)\$ H ( 0 ) = ∫ − ∞ + ∞ h ( τ ) d τ H(0)=\int_{-\infty}^{+\infty}h(\tau)\mathrm{d}\tau H(0)=∫−∞+∞h(τ)dτ 为直流增益 |
自相关函数 | R i ( τ ) R_i(\tau) Ri(τ) | R o ( τ ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ h ( α ) h ( β ) R i ( τ + α − β ) d α d β R_o(\tau)=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}h(\alpha)h(\beta)R_i(\tau+\alpha-\beta)\mathrm{d}\alpha\mathrm{d}\beta Ro(τ)=∫−∞+∞∫−∞+∞h(α)h(β)Ri(τ+α−β)dαdβ |
功率谱密度 | P i ( f ) P_i(f) Pi(f) | P o ( f ) = ∣ H ( f ) ∣ 2 P i ( f ) P_o(f)=|H(f)|^2P_i(f) Po(f)=∣H(f)∣2Pi(f) |
窄带:
Δ
f
≪
f
c
\Delta f\ll f_c
Δf≪fc,
f
c
≫
0
f_c\gg 0
fc≫0; 可视为包络和相位随机缓变的正弦波, 即
ξ
(
t
)
=
a
ξ
(
t
)
cos
[
ω
c
t
+
φ
ξ
(
t
)
]
\xi(t)=a_\xi(t)\cos[\omega_c t+\varphi_\xi(t)]
ξ(t)=aξ(t)cos[ωct+φξ(t)], 其中
a
ξ
(
t
)
>
0
a_\xi(t)>0
aξ(t)>0 为随机包络,
φ
ξ
(
t
)
\varphi_\xi(t)
φξ(t) 为随机相位,
ω
c
\omega_c
ωc 为正弦波中心角频率; 展开后
ξ
(
t
)
=
ξ
c
(
t
)
cos
ω
c
t
−
ξ
s
(
t
)
sin
ω
c
t
\xi(t)=\xi_c(t)\cos\omega_c t-\xi_s(t)\sin\omega_c t
ξ(t)=ξc(t)cosωct−ξs(t)sinωct, 其中
ξ
c
(
t
)
=
a
ξ
(
t
)
cos
φ
ξ
(
t
)
\xi_c(t)=a_\xi(t)\cos\varphi_\xi(t)
ξc(t)=aξ(t)cosφξ(t) 为同向分量,
ξ
s
(
t
)
=
a
ξ
(
t
)
sin
φ
ξ
(
t
)
\xi_s(t)=a_\xi(t)\sin\varphi_\xi(t)
ξs(t)=aξ(t)sinφξ(t) 为正交分量.
Gauss 平稳时, 同向分量和正交分量也 Gauss 平稳; 同时均值为
0
0
0 时, 同向分量和正交分量独立同分布且均值为
0
0
0.
包络一维分布为 Rayleigh 分布
f
(
a
ξ
)
=
a
ξ
σ
ξ
2
exp
{
−
a
ξ
2
2
σ
ξ
2
}
(
a
ξ
≥
0
)
f(a_\xi)=\frac{a_\xi}{\sigma_\xi^2}\exp\{-\frac{a_\xi^2}{2\sigma_\xi^2}\}\ (a_\xi\geq 0)
f(aξ)=σξ2aξexp{−2σξ2aξ2} (aξ≥0), 相位一维分布为均匀分布
f
(
φ
ξ
)
=
1
2
π
(
0
≤
φ
ξ
≤
2
π
)
f(\varphi_\xi)=\frac{1}{2\pi}\ (0\leq\varphi_\xi\leq 2\pi)
f(φξ)=2π1 (0≤φξ≤2π), 统计独立.
正弦波加窄带 Gauss 噪声:
r
(
t
)
=
A
cos
(
ω
c
t
+
θ
)
+
n
(
t
)
r(t)=A\cos(\omega_c t+\theta)+n(t)
r(t)=Acos(ωct+θ)+n(t); 类似地
r
(
t
)
=
z
c
(
t
)
cos
ω
c
t
−
z
s
(
t
)
sin
ω
c
t
r(t)=z_c(t)\cos\omega_c t-z_s(t)\sin\omega_c t
r(t)=zc(t)cosωct−zs(t)sinωct, 其中
z
c
(
t
)
=
A
cos
θ
+
n
c
(
t
)
z_c(t)=A\cos\theta+n_c(t)
zc(t)=Acosθ+nc(t),
z
s
(
t
)
=
A
sin
θ
+
n
s
(
t
)
z_s(t)=A\sin\theta+n_s(t)
zs(t)=Asinθ+ns(t), 包络
z
(
t
)
=
z
c
2
(
t
)
+
z
s
2
(
t
)
z(t)=\sqrt{z_c^2(t)+z_s^2(t)}
z(t)=zc2(t)+zs2(t).
包络一维分布为广义 Rayleigh 分布(Rice 分布)
f
(
z
)
=
z
σ
n
2
exp
{
−
1
2
σ
n
2
(
z
2
+
A
2
)
}
I
0
(
A
z
σ
n
2
)
f(z)=\frac{z}{\sigma_n^2}\exp\{-\frac{1}{2\sigma_n^2}(z^2+A^2)\}I_0(\frac{Az}{\sigma_n^2})
f(z)=σn2zexp{−2σn21(z2+A2)}I0(σn2Az); 其中
I
0
(
x
)
I_0(x)
I0(x) 为 Bessel 函数,
x
≥
0
x\geq 0
x≥0 时单调递增且
I
0
(
0
)
=
1
I_0(0)=1
I0(0)=1;
A
→
0
A\to 0
A→0 即信噪比
γ
=
A
2
2
σ
ξ
2
→
0
\gamma=\frac{A^2}{2\sigma_\xi^2}\to 0
γ=2σξ2A2→0 时退化为 Rayleigh 分布; 信噪比
γ
\gamma
γ 较大时近似为 Gauss 分布.
白噪声: 功率谱密度服从均匀分布;
P
ξ
(
ω
)
=
n
0
2
P_\xi(\omega)=\frac{n_0}{2}
Pξ(ω)=2n0,
R
τ
=
n
0
2
δ
(
t
)
R_{\tau}=\frac{n_0}{2}\delta(t)
Rτ=2n0δ(t),
P
=
R
(
0
)
=
∞
P=R(0)=\infty
P=R(0)=∞; 统计独立, 即仅在
τ
=
0
\tau=0
τ=0 时相关.
Gauss 白噪声: 不同时刻上互不相关且统计独立.
低通 (lowpass) 白噪声:
P
n
(
f
)
=
n
0
2
(
∣
f
∣
≤
f
H
)
P_n(f)=\frac{n_0}{2}\ (|f|\leq f_H)
Pn(f)=2n0 (∣f∣≤fH);
R
(
τ
)
=
n
0
f
H
S
a
(
2
π
f
H
τ
)
R(\tau)=n_0f_H{\rm Sa}(2\pi f_H\tau)
R(τ)=n0fHSa(2πfHτ).
带通 (bandpass) 白噪声:
P
n
(
f
)
=
n
0
2
(
f
c
−
B
2
≤
∣
f
∣
≤
f
c
+
B
2
)
P_n(f)=\frac{n_0}{2}\ (f_c-\frac{B}{2}\leq|f|\leq f_c+\frac{B}{2})
Pn(f)=2n0 (fc−2B≤∣f∣≤fc+2B);
H
(
f
)
=
1
(
f
c
−
B
2
≤
∣
f
∣
≤
f
c
+
B
2
)
H(f)=1\ (f_c-\frac{B}{2}\leq|f|\leq f_c+\frac{B}{2})
H(f)=1 (fc−2B≤∣f∣≤fc+2B);
R
(
τ
)
=
n
0
B
S
a
(
π
B
τ
)
cos
2
π
f
c
τ
R(\tau)=n_0B{\rm Sa}(\pi B\tau)\cos 2\pi f_c\tau
R(τ)=n0BSa(πBτ)cos2πfcτ; 平均功率
N
:
=
P
[
n
(
t
)
]
=
n
0
B
N:=P[n(t)]=n_0B
N:=P[n(t)]=n0B, 其中
B
B
B 为噪声等效带通.
无线信道: 利用电磁波.
地波: 低频(2MHz 以下); 绕射.
天波: 高频(2MHz~30MHz); 电离层反射; 有无法到达的寂静区.
视线: 超高频(30MHz 以上); 穿透电离层;
h
=
D
2
8
r
≈
D
2
50
h=\frac{D^2}{8r}\approx\frac{D^2}{50}
h=8rD2≈50D2.
增加视线传播距离途径: 微波中继; 卫星中继; 电离层散射; 对流层散射; 流星余迹散射.
接收功率:
P
R
=
λ
2
P
T
G
T
G
R
16
π
2
d
2
P_R=\frac{\lambda^2P_TG_TG_R}{16\pi^2d^2}
PR=16π2d2λ2PTGTGR, 其中
P
r
P_r
Pr 为发射功率,
G
T
G_T
GT 为发射天线增益,
G
R
G_R
GR 为接收天线增益,
d
d
d 为传播距离,
λ
\lambda
λ 为波长(m).
传播损耗:
L
f
r
=
P
T
P
R
=
16
π
2
d
2
λ
2
G
T
G
R
L_{fr}=\frac{P_T}{P_R}=\frac{16\pi^2d^2}{\lambda^2G_TG_R}
Lfr=PRPT=λ2GTGR16π2d2; 发射功率与接收功率之比.
有线信道: 对称电缆(双绞线); 同轴电缆; 光纤.
调制信道:
e
0
(
t
)
=
f
[
e
i
(
t
)
]
+
n
(
t
)
e_0(t)=f[e_i(t)]+n(t)
e0(t)=f[ei(t)]+n(t); 其中
n
(
t
)
n(t)
n(t) 为加性噪声;
f
[
e
i
(
t
)
]
=
k
(
t
)
∗
e
i
(
t
)
f[e_i(t)]=k(t)*e_i(t)
f[ei(t)]=k(t)∗ei(t),
k
(
t
)
k(t)
k(t) 为乘性干扰;
H
(
ω
)
=
∣
H
(
ω
)
∣
e
φ
(
ω
)
j
H(\omega)=|H(\omega)|e^{\varphi(\omega)j}
H(ω)=∣H(ω)∣eφ(ω)j,
∣
H
(
ω
)
∣
|H(\omega)|
∣H(ω)∣ 为幅频特性,
φ
(
ω
)
\varphi(\omega)
φ(ω) 为相频特性.
恒惨信道: 传输特性随时间不变或缓变; 无失真时,
∣
H
(
ω
)
∣
=
K
|H(\omega)|=K
∣H(ω)∣=K 为固定衰减,
φ
(
ω
)
=
t
d
ω
\varphi(\omega)=t_d\omega
φ(ω)=tdω 为固定时延, 群时延
τ
(
ω
)
=
d
ϕ
(
ω
)
d
ω
=
t
d
\tau(\omega)=\frac{\mathrm{d}\phi(\omega)}{\mathrm{d}\omega}=t_d
τ(ω)=dωdϕ(ω)=td; 冲激响应
h
(
t
)
=
K
δ
(
t
−
t
d
)
h(t)=K\delta(t-t_d)
h(t)=Kδ(t−td).
频幅失真: 波形失真
→
\to
→ 信噪比
S
N
=
S
n
0
B
{\rm SN}=\frac{S}{n_0B}
SN=n0BS 下降, 信道容量减小; 码间串扰
→
\to
→ 误码率增大.
相频失真: 视频信号影响大, 语音信号影响小; 码间串扰
→
\to
→ 误码率增大.
随参信道: 传输特性随时间随机快变; 衰减随时间变化, 时延随时间变化; 多径传播(接收合成)
→
\to
→ Rayleigh 型衰落(包络缓变), 频率弥散, 频率选择性衰落.
A
cos
ω
0
t
→
R
(
t
)
=
X
c
(
t
)
cos
ω
0
t
−
X
s
(
t
)
sin
ω
0
t
=
V
(
t
)
cos
[
ω
0
t
+
φ
(
t
)
]
A\cos\omega_0 t\to R(t)=X_c(t)\cos\omega_0 t-X_s(t)\sin\omega_0 t=V(t)\cos[\omega_0 t+\varphi(t)]
Acosω0t→R(t)=Xc(t)cosω0t−Xs(t)sinω0t=V(t)cos[ω0t+φ(t)].
减小选择性衰落:
Δ
f
=
1
τ
m
\Delta f=\frac{1}{\tau_m}
Δf=τm1; 带宽
B
s
=
(
1
3
∼
1
5
)
Δ
f
B_s=(\frac{1}{3}\sim\frac{1}{5})\Delta f
Bs=(31∼51)Δf, 即码元宽度
T
s
=
(
3
∼
5
)
τ
m
T_s=(3\sim 5)\tau_m
Ts=(3∼5)τm.
编码信道: 二进制无记忆; 转移概率;
P
(
0
/
0
)
=
1
−
P
(
1
/
0
)
P(0/0)=1-P(1/0)
P(0/0)=1−P(1/0),
P
(
1
/
1
)
=
1
−
P
(
0
/
1
)
P(1/1)=1-P(0/1)
P(1/1)=1−P(0/1);
P
e
=
P
(
0
)
P
(
1
/
0
)
+
P
(
1
)
P
(
0
/
1
)
P_e=P(0)P(1/0)+P(1)P(0/1)
Pe=P(0)P(1/0)+P(1)P(0/1).
信道加性噪声
n
(
t
)
n(t)
n(t): Gauss 白噪声;
P
n
(
f
)
=
n
0
2
P_n(f)=\frac{n_0}{2}
Pn(f)=2n0,
R
n
(
τ
)
=
n
0
2
δ
(
t
)
R_n(\tau)=\frac{n_0}{2}\delta(t)
Rn(τ)=2n0δ(t),
f
n
(
ν
)
=
1
2
π
σ
n
exp
{
−
ν
2
2
σ
n
2
}
f_n(\nu)=\frac{1}{\sqrt{2\pi}\sigma_n}\exp\{-\frac{\nu^2}{2\sigma_n^2}\}
fn(ν)=2πσn1exp{−2σn2ν2}.
热噪声: 电阻性元器件中电子热运动产生, 起伏噪声; 均匀分布在
0
∼
1
0
12
0\sim 10^{12}
0∼1012 Hz 范围; Gauss 白噪声; 电压有效值
V
=
4
k
T
R
B
V=\sqrt{4kTRB}
V=4kTRB (V), 其中 Boltzmann 常数
k
=
1.38
×
1
0
−
23
k=1.38\times 10^{-23}
k=1.38×10−23 (J/K).
窄带 Gauss 噪声:
n
(
t
)
n(t)
n(t) 通过 BPF (带通滤波器); 等效带宽
B
n
=
∫
0
+
∞
P
n
(
f
)
d
f
P
n
(
f
0
)
B_n=\frac{\int_0^{+\infty}P_n(f)\mathrm{d}f}{P_n(f_0)}
Bn=Pn(f0)∫0+∞Pn(f)df, 即通过带宽为
B
n
B_n
Bn 的矩形滤波器和实际接收滤波器的噪声功率相等; 平均功率
N
=
∫
−
∞
+
∞
P
n
(
f
)
d
f
N=\int_{-\infty}^{+\infty}P_n(f)\mathrm{d}f
N=∫−∞+∞Pn(f)df.
信道容量: 无差错传输时最大平均信息速率.
无噪声信息熵:
H
(
x
)
=
−
∫
−
∞
+
∞
p
(
x
)
log
2
p
(
x
)
d
x
H(x)=-\int_{-\infty}^{+\infty}p(x)\log_2 p(x)\mathrm{d}x
H(x)=−∫−∞+∞p(x)log2p(x)dx.
信道噪声损失信息熵 (条件熵):
H
(
x
∣
y
)
=
−
∫
−
∞
+
∞
p
(
y
)
d
y
∫
−
∞
+
∞
p
(
x
∣
y
)
log
2
p
(
x
∣
y
)
d
x
H(x|y)=-\int_{-\infty}^{+\infty}p(y)\mathrm{d}y\int_{-\infty}^{+\infty}p(x|y)\log_2 p(x|y)\mathrm{d}x
H(x∣y)=−∫−∞+∞p(y)dy∫−∞+∞p(x∣y)log2p(x∣y)dx.
信息传输速率:
R
=
r
[
H
(
x
)
−
H
(
x
∣
y
)
]
R=r[H(x)-H(x|y)]
R=r[H(x)−H(x∣y)] (bps),
r
r
r 为符号速率.
信道容量:
C
t
=
max
R
C_t=\max R
Ct=maxR (bps), 即
C
=
max
P
(
X
)
[
H
(
x
)
−
H
(
x
∣
y
)
]
C=\max_{P(X)}[H(x)-H(x|y)]
C=maxP(X)[H(x)−H(x∣y)] (b/符号).
Shannon:
C
=
B
log
2
(
1
+
S
N
)
C=B\log_2(1+\frac{S}{N})
C=Blog2(1+NS) (bps), 其中
S
S
S 为信号平均功率 (W),
B
B
B 为带宽 (Hz),
N
=
n
0
B
N=n_0B
N=n0B 为噪声功率,
n
0
n_0
n0 为噪声单边功率谱密度,
S
N
\frac{S}{N}
NS 为信噪比; 信噪比与带宽给定时信息传输速率理论极限.
结论:
R
b
≤
C
R_b\leq C
Rb≤C 时总能找到信道编码方式实现无差错传输;
R
b
>
C
R_b>C
Rb>C 时则不能实现无差错传输; 增加
S
S
S 或减小
n
0
n_0
n0 时可增加
C
C
C, 特别
S
→
∞
S\to\infty
S→∞ 或
n
0
→
0
n_0\to 0
n0→0 时
C
→
∞
C\to\infty
C→∞; 增加
B
B
B 时可增加
C
C
C, 但
B
→
∞
B\to\infty
B→∞ 时
C
→
log
2
e
S
n
0
≈
1.44
S
n
0
C\to\log_2 e\frac{S}{n_0}\approx 1.44\frac{S}{n_0}
C→log2en0S≈1.44n0S; 给定
C
C
C 时,
S
N
\frac{S}{N}
NS 和
B
B
B 反向变动 (可互换).