2 模拟调制系统
调制: 将消息信号搭载(边带)到载波参数上(调幅; 调频; 调相); 边带滤波器
h
(
t
)
↔
H
(
ω
)
h(t)\leftrightarrow H(\omega)
h(t)↔H(ω).
载波: 高频周期性震荡信号;
c
(
t
)
=
A
cos
(
ω
c
t
+
φ
)
c(t)=A\cos(\omega_c t+\varphi)
c(t)=Acos(ωct+φ).
已调信号: 含有消息信号的受调载波;
s
m
(
t
)
=
[
m
(
t
)
cos
ω
c
t
]
∗
h
(
t
)
s_m(t)=[m(t)\cos\omega_c t]*h(t)
sm(t)=[m(t)cosωct]∗h(t),
S
m
(
ω
)
=
1
2
[
M
(
ω
+
ω
c
)
+
M
(
ω
−
ω
c
)
]
H
(
ω
)
S_m(\omega)=\frac{1}{2}[M(\omega+\omega_c)+M(\omega-\omega_c)]H(\omega)
Sm(ω)=21[M(ω+ωc)+M(ω−ωc)]H(ω).
解调: 从已调信号中恢复消息信号.
常规调幅(AM):
m
(
t
)
‾
=
0
\overline{m(t)}=0
m(t)=0 且
max
∣
m
(
t
)
∣
≤
A
0
\max|m(t)|\leq A_0
max∣m(t)∣≤A0 时,
s
A
M
=
[
A
0
+
m
(
t
)
]
cos
ω
c
t
s_{\rm AM}=[A_0+m(t)]\cos\omega_c t
sAM=[A0+m(t)]cosωct,
A
0
A_0
A0 为直流偏量,
A
0
cos
ω
c
t
A_0\cos\omega_c t
A0cosωct 为载波项,
m
(
t
)
cos
ω
c
t
m(t)\cos\omega_c t
m(t)cosωct 为上下边带项; 特别确知信号时
S
A
M
=
π
A
0
[
δ
(
ω
+
ω
c
)
+
δ
(
ω
−
ω
c
)
]
+
1
2
[
M
(
ω
+
ω
c
)
+
M
(
ω
−
ω
c
)
]
S_{\rm AM}=\pi A_0[\delta(\omega+\omega_c)+\delta(\omega-\omega_c)]+\frac{1}{2}[M(\omega+\omega_c)+M(\omega-\omega_c)]
SAM=πA0[δ(ω+ωc)+δ(ω−ωc)]+21[M(ω+ωc)+M(ω−ωc)].
特点: 包络正比于
m
(
t
)
m(t)
m(t) 可采用包络检波; 频谱分为载频分量, 上边带(
∣
ω
∣
<
ω
c
|\omega|<\omega_c
∣ω∣<ωc), 下边带(
∣
ω
∣
≥
ω
c
|\omega|\geq\omega_c
∣ω∣≥ωc); 传输带宽
B
A
M
=
2
f
H
B_{\rm AM}=2f_H
BAM=2fH; 接收简单.
缺点:
P
A
M
=
A
0
2
2
+
m
2
(
t
)
‾
2
=
P
c
+
P
s
⟹
P_{\rm AM}=\frac{A_0^2}{2}+\frac{\overline{m^2(t)}}{2}=P_c+P_s\implies
PAM=2A02+2m2(t)=Pc+Ps⟹ (调制效率)功率利用率
η
A
M
=
P
s
P
r
m
≤
0.5
\eta_{\rm AM}=\frac{P_s}{P_{rm}}\leq 0.5
ηAM=PrmPs≤0.5.
调幅系数:
m
=
max
∣
m
(
t
)
∣
A
0
m=\frac{\max|m(t)|}{A_0}
m=A0max∣m(t)∣;
m
<
1
m<1
m<1 正常调幅,
m
>
1
m>1
m>1 过调幅,
m
=
1
m=1
m=1 满调幅.
抑制载波双边带调制(DSB-SC):
m
(
t
)
‾
=
0
\overline{m(t)}=0
m(t)=0时,
s
D
S
B
=
m
(
t
)
cos
ω
c
t
s_{\rm DSB}=m(t)\cos\omega_c t
sDSB=m(t)cosωct;
S
D
S
B
=
1
2
[
M
(
ω
+
ω
c
)
+
M
(
ω
−
ω
c
)
]
S_{\rm DSB}=\frac{1}{2}[M(\omega+\omega_c)+M(\omega-\omega_c)]
SDSB=21[M(ω+ωc)+M(ω−ωc)].
特点: 需相干解调; 无载频分量, 只有上下边带; 传输带宽
B
D
S
B
=
B
A
M
=
2
f
H
B_{\rm DSB}=B_{\rm AM}=2f_H
BDSB=BAM=2fH; 调制效率 100%; 调频立体声查信号调制, SSB 和 VSB 的基础.
单边带调制(SSB): DSB 滤掉一个边带形成.
滤波法: 形成 DSB 后通过滤波器
H
S
S
B
(
ω
)
H_{\rm SSB}(\omega)
HSSB(ω) 频段处陡峭截止(理想低通/理想高通).
移相法: 单音正弦波
m
(
t
)
=
A
m
cos
ω
m
t
m(t)=A_m\cos\omega_m t
m(t)=Amcosωmt,
c
(
t
)
=
cos
c
t
⟹
s
D
S
B
=
1
2
A
m
cos
(
ω
c
−
ω
m
)
t
+
1
2
A
m
cos
(
ω
c
+
ω
m
)
t
⟹
s
S
S
B
=
1
2
m
(
t
)
cos
c
t
∓
1
2
m
(
t
)
^
sin
ω
c
t
c(t)=\cos_c t\implies s_{\rm DSB}=\frac{1}{2}A_m\cos(\omega_c-\omega_m)t+\frac{1}{2}A_m\cos(\omega_c+\omega_m)t\implies s_{\rm SSB}=\frac{1}{2}m(t)\cos_c t\mp\frac{1}{2}\hat{m(t)}\sin\omega_c t
c(t)=cosct⟹sDSB=21Amcos(ωc−ωm)t+21Amcos(ωc+ωm)t⟹sSSB=21m(t)cosct∓21m(t)^sinωct;
m
(
t
)
^
\hat{m(t)}
m(t)^ 为 Hilbert 变换, 即相移
π
2
\frac{\pi}{2}
2π; 传递函数
H
h
(
ω
)
=
M
(
ω
)
^
M
(
ω
)
=
−
j
s
g
n
ω
H_h(\omega)=\frac{\hat{M(\omega)}}{M(\omega)}=-j{\rm sgn}\omega
Hh(ω)=M(ω)M(ω)^=−jsgnω.
特点: 需相干解调; 只有上边带或下边带; 频带利用率高
B
S
S
B
=
B
A
M
2
=
f
H
B_{\rm SSB}=\frac{B_{AM}}{2}=f_H
BSSB=2BAM=fH; 低功耗; 设备复杂, 实现困难.
残留边带调制(VSB): 介于 DSB 和 SSB 之间;
S
V
S
B
(
ω
)
=
S
D
S
B
(
ω
)
⋅
H
(
ω
)
S_{\rm VSB}(\omega)=S_{\rm DSB}(\omega)\cdot H(\omega)
SVSB(ω)=SDSB(ω)⋅H(ω).
无失真解调条件:
c
(
t
)
=
2
cos
ω
c
t
⟹
S
p
(
ω
)
=
S
V
S
B
(
ω
+
ω
c
)
+
S
V
S
B
(
ω
−
ω
c
)
=
1
2
[
M
(
ω
+
2
ω
c
)
+
M
(
ω
)
]
H
(
ω
+
ω
c
)
+
1
2
[
M
(
ω
)
+
M
(
ω
−
2
ω
c
)
]
H
(
ω
−
ω
c
)
⟹
S
d
(
ω
)
=
1
2
M
(
ω
)
[
H
(
ω
+
ω
c
)
+
H
(
ω
−
ω
c
)
]
⟹
H
(
ω
+
ω
c
)
+
H
(
ω
−
ω
c
)
c(t)=2\cos\omega_c t\implies S_p(\omega)=S_{\rm VSB}(\omega+\omega_c)+S_{\rm VSB}(\omega-\omega_c)=\frac{1}{2}[M(\omega+2\omega_c)+M(\omega)]H(\omega+\omega_c)+\frac{1}{2}[M(\omega)+M(\omega-2\omega_c)]H(\omega-\omega_c)\implies S_d(\omega)=\frac{1}{2}M(\omega)[H(\omega+\omega_c)+H(\omega-\omega_c)]\implies H(\omega+\omega_c)+H(\omega-\omega_c)
c(t)=2cosωct⟹Sp(ω)=SVSB(ω+ωc)+SVSB(ω−ωc)=21[M(ω+2ωc)+M(ω)]H(ω+ωc)+21[M(ω)+M(ω−2ωc)]H(ω−ωc)⟹Sd(ω)=21M(ω)[H(ω+ωc)+H(ω−ωc)]⟹H(ω+ωc)+H(ω−ωc) 为常数, 即滤波器在载频处有互补对称性.
特点: 传输带宽有所增加
f
H
<
B
V
S
B
<
2
f
H
f_H<B_{\rm VSB}<2f_H
fH<BVSB<2fH, 但实现简单.
相干解调: 载波相乘后通过 LPF (低通滤波器); 无门限效应; 需载波同步; 适用于所有线性调制.
包络检波: 检波器由半波或全波整流器和 LPF 组成, 隔去直流; 无需载波同步, 实现简单; 仅适用于 AM,
max
∣
m
(
t
)
∣
≤
A
0
\max|m(t)|\leq A_0
max∣m(t)∣≤A0.
插入载波包络检波: 插入恢复载波形成近似 AM 后采用包络检波; 插入载波幅度很大, 需载波同步; 适用于抑制载波线性调制.
噪声分析: 加性噪声只影响已调信号接收, 先通过 BPF 再通过解调器, 故解调器输入端噪声
n
i
(
t
)
=
n
c
(
t
)
cos
ω
0
t
−
n
s
(
t
)
sin
ω
0
t
n_i(t)=n_c(t)\cos\omega_0 t-n_s(t)\sin\omega_0 t
ni(t)=nc(t)cosω0t−ns(t)sinω0t 为平稳窄带 Gauss 噪声;
n
i
(
t
)
‾
=
n
c
(
t
)
‾
=
n
s
(
t
)
‾
=
0
\overline{n_i(t)}=\overline{n_c(t)}=\overline{n_s(t)}=0
ni(t)=nc(t)=ns(t)=0,
n
i
2
(
t
)
‾
=
n
c
2
(
t
)
‾
=
n
s
2
(
t
)
‾
=
N
i
=
n
0
B
\overline{n_i^2(t)}=\overline{n_c^2(t)}=\overline{n_s^2(t)}=N_i=n_0B
ni2(t)=nc2(t)=ns2(t)=Ni=n0B,
N
i
N_i
Ni 为平均功率,
n
0
n_0
n0 为单边功率谱密度, BPF 高度为
1
1
1 带宽为
B
B
B (等于已调信号频带宽度).
信噪比: 输出信噪比 -
S
o
N
o
=
m
o
2
(
t
)
‾
n
o
2
(
t
)
‾
\frac{S_o}{N_o}=\frac{\overline{m_o^2(t)}}{\overline{n_o^2(t)}}
NoSo=no2(t)mo2(t); 输入信噪比 -
S
i
N
i
=
s
i
2
(
t
)
‾
n
i
2
(
t
)
‾
\frac{S_i}{N_i}=\frac{\overline{s_i^2(t)}}{\overline{n_i^2(t)}}
NiSi=ni2(t)si2(t); 制度增益
G
=
S
o
/
N
0
S
i
/
N
i
G=\frac{S_o/N_0}{S_i/N_i}
G=Si/NiSo/N0.
DSB-相干解调:
m
o
(
t
)
=
1
2
m
(
t
)
m_o(t)=\frac{1}{2}m(t)
mo(t)=21m(t),
n
o
=
1
2
n
c
(
t
)
n_o=\frac{1}{2}n_c(t)
no=21nc(t),
S
i
=
[
m
(
t
)
cos
ω
c
t
]
2
‾
=
1
2
m
2
(
t
)
‾
⟹
G
D
S
B
=
2
S_i=\overline{[m(t)\cos\omega_c t]^2}=\frac{1}{2}\overline{m^2(t)}\implies G_{\rm DSB}=2
Si=[m(t)cosωct]2=21m2(t)⟹GDSB=2, 即噪声正交分量
n
s
(
t
)
n_s(t)
ns(t) 被抑制.
SSB-相干解调:
m
o
(
t
)
=
1
4
m
(
t
)
m_o(t)=\frac{1}{4}m(t)
mo(t)=41m(t),
S
i
=
1
4
[
m
(
t
)
cos
ω
c
t
∓
m
(
t
)
^
sin
ω
c
t
]
2
‾
=
1
4
m
2
(
t
)
‾
⟹
G
S
S
B
=
1
S_i=\frac{1}{4}\overline{[m(t)\cos\omega_c t\mp\hat{m(t)}\sin\omega_c t]^2}=\frac{1}{4}\overline{m^2(t)}\implies G_{\rm SSB}=1
Si=41[m(t)cosωct∓m(t)^sinωct]2=41m2(t)⟹GSSB=1, 即信号和噪声正交分量均被抑制.
AM-包络检波:
S
i
=
A
0
2
2
+
m
2
(
t
)
‾
2
S_i=\frac{A_0^2}{2}+\frac{\overline{m^2(t)}}{2}
Si=2A02+2m2(t);
s
m
+
n
i
(
t
)
=
E
(
t
)
cos
[
ω
c
t
+
v
a
r
p
h
i
(
t
)
]
s_m+n_i(t)=E(t)\cos[\omega_c t+varphi(t)]
sm+ni(t)=E(t)cos[ωct+varphi(t)], 合成包络
E
(
t
)
=
[
A
0
+
m
(
t
)
+
n
c
(
t
)
]
2
+
n
s
2
(
t
)
E(t)=\sqrt{[A_0+m(t)+n_c(t)]^2+n_s^2(t)}
E(t)=[A0+m(t)+nc(t)]2+ns2(t).
大信噪比 (
[
A
0
+
m
(
t
)
]
≫
n
c
2
(
t
)
+
n
s
2
(
t
)
[A_0+m(t)]\gg\sqrt{n_c^2(t)+n_s^2(t)}
[A0+m(t)]≫nc2(t)+ns2(t)) 时,
E
(
t
)
≈
A
0
+
m
(
t
)
+
n
c
(
t
)
⟹
G
A
M
=
2
m
2
(
t
)
‾
A
0
2
+
m
2
(
t
)
‾
E(t)\approx A_0+m(t)+n_c(t)\implies G_{\rm AM}=\frac{2\overline{m^2(t)}}{A_0^2+\overline{m^2(t)}}
E(t)≈A0+m(t)+nc(t)⟹GAM=A02+m2(t)2m2(t).
小信噪比时:
E
(
t
)
≈
R
(
t
)
+
[
A
0
+
m
(
t
)
]
cos
θ
(
t
)
E(t)\approx R(t)+[A_0+m(t)]\cos\theta(t)
E(t)≈R(t)+[A0+m(t)]cosθ(t), 包络
R
(
t
)
=
n
c
2
(
t
)
+
n
s
2
(
t
)
R(t)=\sqrt{n_c^2(t)+n_s^2(t)}
R(t)=nc2(t)+ns2(t),
cos
θ
(
t
)
=
n
c
(
t
)
R
(
t
)
\cos\theta(t)=\frac{n_c(t)}{R(t)}
cosθ(t)=R(t)nc(t); 门限效应 - 信号被扰乱成噪声, 输出信噪比急剧恶化.
非线性调制(角度调制):
s
m
(
t
)
=
A
cos
[
ω
c
t
+
φ
(
t
)
]
s_m(t)=A\cos[\omega_c t+\varphi(t)]
sm(t)=Acos[ωct+φ(t)]; 调相(PM)
φ
(
t
)
=
K
p
m
(
t
)
\varphi(t)=K_p m(t)
φ(t)=Kpm(t),
K
p
K_p
Kp 为调相灵敏度 (rad/V); 调频(FM)
d
φ
(
t
)
d
t
=
K
f
m
(
t
)
\frac{\mathrm{d}\varphi(t)}{\mathrm{d}t}=K_f m(t)
dtdφ(t)=Kfm(t),
K
f
K_f
Kf 为调频灵敏度 (rad/(sV)).
单音调频:
m
(
t
)
=
A
m
cos
ω
m
t
⟹
φ
(
t
)
=
m
f
sin
ω
m
t
m(t)=A_m\cos\omega_m t\implies \varphi(t)=m_f\sin\omega_m t
m(t)=Amcosωmt⟹φ(t)=mfsinωmt,
m
f
=
K
f
A
m
ω
m
=
Δ
ω
ω
m
=
Δ
f
f
m
m_f=\frac{K_fA_m}{\omega_m}=\frac{\Delta\omega}{\omega_m}=\frac{\Delta f}{f_m}
mf=ωmKfAm=ωmΔω=fmΔf 为调频指数(最大相位偏移);
s
F
M
(
t
)
=
A
∑
n
=
−
∞
+
∞
J
n
(
m
f
)
cos
(
ω
c
+
n
ω
m
)
t
s_{\rm FM}(t)=A\sum_{n=-\infty}^{+\infty}J_n(m_f)\cos(\omega_c+n\omega_m)t
sFM(t)=A∑n=−∞+∞Jn(mf)cos(ωc+nωm)t,
J
n
(
x
)
J_n(x)
Jn(x) 为第一类 n 阶 Bessel 函数;
S
F
M
(
ω
)
=
π
A
∑
n
=
−
∞
+
∞
J
n
(
m
f
)
[
δ
(
ω
−
ω
c
−
n
ω
m
)
+
δ
(
ω
+
ω
c
+
n
ω
m
)
]
S_{\rm FM}(\omega)=\pi A\sum_{n=-\infty}^{+\infty}J_n(m_f)[\delta(\omega-\omega_c-n\omega_m)+\delta(\omega+\omega_c+n\omega_m)]
SFM(ω)=πA∑n=−∞+∞Jn(mf)[δ(ω−ωc−nωm)+δ(ω+ωc+nωm)]; 载频分量
ω
c
\omega_c
ωc 和无数对边频
ω
c
±
n
ω
m
\omega_c\pm n\omega_m
ωc±nωm(实际保留上下边频分量
2
n
=
2
(
m
f
+
1
)
2n=2(m_f+1)
2n=2(mf+1)),
B
F
M
=
2
(
m
f
+
1
)
f
m
=
2
(
Δ
f
+
f
m
)
B_{\rm FM}=2(m_f+1)f_m=2(\Delta f+f_m)
BFM=2(mf+1)fm=2(Δf+fm);
m
f
≪
1
m_f\ll 1
mf≪1 时
B
F
M
≈
2
f
m
B_{\rm FM}\approx 2f_m
BFM≈2fm, 即
∣
K
f
∫
m
(
t
)
d
t
∣
≪
π
6
≈
0.5
|K_f\int m(t)\mathrm{d}t|\ll \frac{\pi}{6}\approx 0.5
∣Kf∫m(t)dt∣≪6π≈0.5 时, 为窄带调频(NBFM), 否则
B
F
M
≈
2
Δ
f
B_{\rm FM}\approx 2\Delta f
BFM≈2Δf 为宽带调频(WBFM);
P
F
M
=
A
2
2
=
P
c
P_{\rm FM}=\frac{A^2}{2}=P_c
PFM=2A2=Pc, 即调制前后功率不变, 功率分配比例与
m
f
m_f
mf 有关.
特点: 相干调解仅适用于 NBFM; 包络恒定; 频偏
∝
m
(
t
)
\propto m(t)
∝m(t); 相偏
∝
∫
m
(
t
)
d
t
\propto \int m(t)\mathrm{d}t
∝∫m(t)dt; 传输带宽
B
F
M
=
(
m
f
+
1
)
2
f
m
B_{\rm FM}=(m_f+1)2f_m
BFM=(mf+1)2fm; 抗噪声能力强, 占用信道带宽大, 频谱利用率较低.
直接法调频: 直接通过电压控制振荡器(VCO)
ω
i
(
t
)
=
ω
0
+
K
f
m
(
t
)
\omega_i(t)=\omega_0+K_f m(t)
ωi(t)=ω0+Kfm(t); 电路简单, 频偏较大; 频率稳定度不高, 可使用锁相(PLL)环改进.
Amstrong 间接法调频: 通过积分器再调相得到 NBFM,
n
n
n 次倍频后得到 WBFM; 频率稳定度好; 需要多次倍频和混频, 电路复杂.
非相干解调(鉴频器): 由微分电路和包络检波组成; 通过 BPF 和限幅器, 通过微分器将调频变为调幅调相, 再通过包络检波和 LPF 得到
m
o
=
K
d
K
f
m
(
t
)
m_o=K_d K_f m(t)
mo=KdKfm(t).
频分复用: 按频率划分信道同时传输多路信号, 充分利用信道频带资源; 调制
→
\to
→ 合成
→
\to
→ 传输
→
\to
→ 分路
→
\to
→ 解调.
同等条件: 解调器输入信号功率 S i S_i Si; 信道加性噪声为均值 0 0 0, 单边功率谱密度 n 0 n_0 n0 的 Gauss 白噪声; 基带信号带宽 f m f_m fm, 均值为 0 0 0; AM 满调幅.
调制方法 | 信号带宽(反比于频率利用率) | 调制效率(功率利用率) | 输出信噪比(抗噪声性能) | 制度增益 | 设备 |
---|---|---|---|---|---|
AM | 2 f m 2f_m 2fm | 1 3 \frac{1}{3} 31 | S i 3 n 0 f m \frac{S_i}{3n_0 f_m} 3n0fmSi | 2 3 \frac{2}{3} 32 | 简单 |
DSB | 2 f m 2f_m 2fm | 1 1 1 | S i n 0 f m \frac{S_i}{n_0 f_m} n0fmSi | 2 2 2 | 中等 |
SSB | f m f_m fm | 1 1 1 | S i n 0 f m \frac{S_i}{n_0 f_m} n0fmSi | 1 1 1 | 复杂 |
VSB | 略大于 f m f_m fm | 1 1 1 | 近似 S i n 0 f m \frac{S_i}{n_0 f_m} n0fmSi | 近似 1 1 1 | 复杂 |
FM | 2 ( m f + 1 ) f m 2(m_f+1)f_m 2(mf+1)fm | 1 1 1 | 3 m f 2 2 S i n 0 f m \frac{3m_f^2}{2}\frac{S_i}{n_0 f_m} 23mf2n0fmSi | 3 m f 2 ( m f + 1 ) 3m_f^2(m_f+1) 3mf2(mf+1) | 中等 |
3 数字通信系统
基带传输系统: 基带脉冲输入
→
\to
→ 发送滤波器
→
\to
→ 信道(噪声)
→
\to
→ 接收滤波器
→
\to
→ 同步提取
→
\to
→ 抽样判决器
→
\to
→ 基带脉冲输出.
发送滤波器: 匹配信道, 减小码间串扰, 利于同步提取.
接收滤波器: 滤除带外噪声, 对信道特性均衡, 使输出利于抽样判决.
抽样判决器: 确定发送信码序列, 再生基带信号.
单极性非归零: 正电平 “1”, 零电平 “0”; 极性单一, 有直流.
双极性非归零: 正电平 “1”, 负电平 “0”; 恢复信号用零电平判决, 抗干扰.
单极性归零: 正脉冲 “1”, 无脉冲 “0”; 电脉冲宽度
τ
<
\tau<
τ< 码元宽度
T
B
T_B
TB; 占空比 50%.
双极性归零: 正脉冲 “1”, 负脉冲 “0”; “1” 和 “0” 等概率时无电流; 恢复信号用零点平判决, 抗干扰; 占空比 100%.
传号差分: 相邻码元跳变 “1”, 不跳变 “0”; 与码元本身无关, 可消除设备初始状态不确定性的影响.
空号差分: 跳变 “0”, 不跳变 “1”.
四电平: +3E-“11”, +E-“10”, -E-“00”, -3E-“01”; 一个脉冲携带多个比特信息; 传码率一定时, 传信率更高, 频带利用率更高.
八电平: +7E-“111”, +5E-“110”, +3E-“101”, +E-“100”, -E-“000”, -3E-“001”, -5E-“010”, -7E-“011”.
随机脉冲序列:
s
(
t
)
=
∑
n
=
−
∞
+
∞
a
n
g
(
t
−
n
T
b
)
s(t)=\sum_{n=-\infty}^{+\infty}a_ng(t-nT_b)
s(t)=∑n=−∞+∞ang(t−nTb), 其中
a
n
a_n
an 为第
n
n
n 个码元电平值(随机变量),
T
B
T_B
TB 为码元持续时间,
g
(
t
)
g(t)
g(t) 为脉冲波形;
s
(
t
)
=
∑
n
=
−
∞
+
∞
s
n
(
t
)
s(t)=\sum_{n=-\infty}^{+\infty}s_n(t)
s(t)=∑n=−∞+∞sn(t),
P
{
s
n
(
t
)
=
g
1
(
t
−
n
T
B
)
}
=
P
P\{s_n(t)=g_1(t-nT_B)\}=P
P{sn(t)=g1(t−nTB)}=P,
P
{
s
n
(
t
)
=
g
2
(
t
−
n
T
B
)
}
=
1
−
P
P\{s_n(t)=g_2(t-nT_B)\}=1-P
P{sn(t)=g2(t−nTB)}=1−P;
s
(
t
)
=
u
(
t
)
+
v
(
t
)
↔
P
s
(
f
)
=
P
u
(
f
)
+
P
v
(
f
)
s(t)=u(t)+v(t)\leftrightarrow P_s(f)=P_u(f)+P_v(f)
s(t)=u(t)+v(t)↔Ps(f)=Pu(f)+Pv(f).
稳态波:
v
(
t
)
=
s
(
t
)
‾
=
∑
n
=
−
∞
+
∞
[
P
g
1
(
t
−
n
T
B
)
+
(
1
−
P
)
g
2
(
t
−
n
T
B
)
]
v(t)=\overline{s(t)}=\sum_{n=-\infty}^{+\infty}[Pg_1(t-nT_B)+(1-P)g_2(t-nT_B)]
v(t)=s(t)=∑n=−∞+∞[Pg1(t−nTB)+(1−P)g2(t−nTB)] 统计平均; 离散功率谱
P
v
(
f
)
=
∑
m
=
−
∞
+
∞
∣
f
B
[
P
G
1
(
m
f
B
)
+
(
1
−
P
)
G
2
(
m
f
B
)
]
∣
2
δ
(
f
−
m
f
B
)
P_v(f)=\sum_{m=-\infty}^{+\infty}|f_B[PG_1(mf_B)+(1-P)G_2(mf_B)]|^2\delta(f-mf_B)
Pv(f)=∑m=−∞+∞∣fB[PG1(mfB)+(1−P)G2(mfB)]∣2δ(f−mfB), 其中
G
(
m
f
B
)
↔
g
(
t
)
G(mf_B)\leftrightarrow g(t)
G(mfB)↔g(t),
m
=
0
m=0
m=0 对应直流分量,
m
=
±
1
m=\pm 1
m=±1 对应定时分量.
交变波:
u
(
t
)
=
s
(
t
)
−
v
(
t
)
=
∑
n
=
−
∞
+
∞
u
n
(
t
)
u(t)=s(t)-v(t)=\sum_{n=-\infty}^{+\infty}u_n(t)
u(t)=s(t)−v(t)=∑n=−∞+∞un(t); 连续功率谱
P
u
(
f
)
=
f
B
P
(
1
−
P
)
∣
G
1
(
f
)
−
G
2
(
f
)
∣
2
P_u(f)=f_BP(1-P)|G_1(f)-G_2(f)|^2
Pu(f)=fBP(1−P)∣G1(f)−G2(f)∣2.
单边谱:
P
s
(
f
)
=
2
f
B
P
(
1
−
P
)
∣
G
1
(
f
)
−
G
2
(
f
)
∣
2
+
2
∑
m
=
−
∞
+
∞
∣
f
B
[
P
G
1
(
m
f
B
)
+
(
1
−
P
)
G
2
(
m
f
B
)
]
∣
2
δ
(
f
−
m
f
B
)
+
∣
f
B
[
P
G
1
(
0
)
+
(
1
−
P
)
G
2
(
0
)
]
∣
2
δ
(
f
)
P_s(f)=2f_BP(1-P)|G_1(f)-G_2(f)|^2+2\sum_{m=-\infty}^{+\infty}|f_B[PG_1(mf_B)+(1-P)G_2(mf_B)]|^2\delta(f-mf_B)+|f_B[PG_1(0)+(1-P)G_2(0)]|^2\delta(f)
Ps(f)=2fBP(1−P)∣G1(f)−G2(f)∣2+2∑m=−∞+∞∣fB[PG1(mfB)+(1−P)G2(mfB)]∣2δ(f−mfB)+∣fB[PG1(0)+(1−P)G2(0)]∣2δ(f),
f
≥
0
f\geq 0
f≥0.
AMI 码: “1”-
±
1
\rm \pm 1
±1 交替, “0”-0; 三电平, 无直流分量, 低频较少, 译码简单; 信码长连 “0” 时难以获取定时信息.
HDB3 码: 连 “0” 超过 3 个时, 第 4 个 “0” 改为破坏脉冲
V
±
\rm V_{\pm}
V±; 相邻 V 码极性交替; V 码与前一个非零脉冲极性相同, 否则 “0000” 改为调节脉冲
B
±
\rm B_{\pm}
B± 00
V
±
\rm V_{\pm}
V±; 有利于提取定时信息.
双相码 (Manchester): “1”-10, “0”-01; 双极性二电平, 无直流分量, 位定时, 编译码简单, 连码个数不超过 2 个; 带宽为信码的 2 倍.
差分双相码: 码元中间跳变用于同步, “1”-码元间跳变, “0”-码元间无跳变; 避免极性反转引起的译码错误.
CMI 码: “1”-11和00交替, “0”-01; 双极性二电平, 连码个数不超过 3 个.
块码 (nBmB): 信码
n
n
n 位一组对应
m
m
m 位一组,
m
>
n
m>n
m>n 多出
2
m
−
2
n
2^m-2^n
2m−2n 个码组可设为禁码; 同步和检错能力强, 传输带宽随
m
m
m 增加, 通常选择
m
=
n
+
1
m=n+1
m=n+1.
码间串扰: 传输特性不理想时前后码元波形畸变展宽, 前波形拖尾蔓延到当前码元抽样时刻上, 对当前码元判决造成干扰.
无码间串扰:
∑
n
≠
k
a
n
h
[
(
k
−
n
)
T
B
+
t
0
]
=
0
\sum_{n\ne k}a_nh[(k-n)T_B+t_0]=0
∑n=kanh[(k−n)TB+t0]=0.
时域条件:
h
(
k
T
B
)
=
1
h(kT_B)=1
h(kTB)=1,
k
=
0
k=0
k=0;
0
0
0,
k
≠
0
k\ne 0
k=0 即抽样值除
t
=
0
t=0
t=0 外均为
0
0
0.
频域条件:
∑
i
H
(
ω
+
2
π
i
T
B
)
=
T
B
\sum_i H(\omega+\frac{2\pi i}{T_B})=T_B
∑iH(ω+TB2πi)=TB,
∣
ω
∣
≤
π
T
b
|\omega|\leq \frac{\pi}{T_b}
∣ω∣≤Tbπ 即等效(切割
→
\to
→平移
→
\to
→相加)为一个理想低通滤波器(矩形).
理想低通特性:
H
(
ω
)
=
T
B
H(\omega)=T_B
H(ω)=TB,
∣
ω
∣
≤
π
T
B
|\omega|\leq\frac{\pi}{T_B}
∣ω∣≤TBπ;
0
0
0,
∣
ω
∣
>
π
T
B
|\omega|>\frac{\pi}{T_B}
∣ω∣>TBπ; 带宽(Nyquist)
f
N
:
=
1
2
T
B
f_N:=\frac{1}{2T_B}
fN:=2TB1; 最高传输速率(Nyquist)
R
B
=
1
T
B
=
2
f
N
R_B=\frac{1}{T_B}=2f_N
RB=TB1=2fN (Baud); 最高频带利用率
η
=
R
B
f
N
=
2
\eta=\frac{R_B}{f_N}=2
η=fNRB=2 (Baud/Hz).
余弦滚降特性: 最高频带利用率
H
(
X
)
=
2
H(X)=2
H(X)=2 (b/符号); 带宽
B
=
f
N
+
Δ
f
=
(
1
+
α
)
f
N
B=f_N+\Delta f=(1+\alpha)f_N
B=fN+Δf=(1+α)fN; 滚降系数
α
=
Δ
f
f
N
\alpha=\frac{\Delta f}{f_N}
α=fNΔf.
眼图: 接收滤波器后水平扫描周期
T
C
T_C
TC 与接收码元周期
T
B
T_B
TB 同步, 余晖作用下所有码元波形重叠起来; 大"眼睛"且线迹细而清晰时无码间串扰.
最佳判决门限: 使误码率最小的判决门限电平.
二进制双极性基带系统: 最佳判决门限
V
d
∗
=
σ
n
2
2
A
ln
P
(
0
)
P
(
1
)
V_d^*=\frac{\sigma_n^2}{2A}\ln\frac{P(0)}{P(1)}
Vd∗=2Aσn2lnP(1)P(0); 等概时
V
d
∗
=
0
V_d^*=0
Vd∗=0, 误码率
P
e
=
1
2
e
r
f
c
(
A
2
σ
n
)
P_e=\frac{1}{2}{\rm erfc}(\frac{A}{\sqrt{2}\sigma_n})
Pe=21erfc(2σnA).
二进制单极性基带系统: 最佳判决门限
V
d
∗
=
A
2
+
σ
n
2
A
ln
P
(
0
)
P
(
1
)
V_d^*=\frac{A}{2}+\frac{\sigma_n^2}{A}\ln\frac{P(0)}{P(1)}
Vd∗=2A+Aσn2lnP(1)P(0); 等概时
V
d
∗
=
A
2
V_d^*=\frac{A}{2}
Vd∗=2A, 误码率
P
e
=
1
2
e
r
f
c
(
A
2
2
σ
n
)
P_e=\frac{1}{2}{\rm erfc}(\frac{A}{2\sqrt{2}\sigma_n})
Pe=21erfc(22σnA).
通一断键控(OOK):
P
{
e
O
O
K
(
t
)
=
A
cos
ω
c
t
}
=
P
P\{e_{\rm OOK}(t)=A\cos\omega_ct\}=P
P{eOOK(t)=Acosωct}=P,
P
{
e
O
O
K
(
t
)
=
0
}
=
1
−
P
P\{e_{\rm OOK}(t)=0\}=1-P
P{eOOK(t)=0}=1−P.
二进制振幅键控(2ASK):
e
2
A
S
K
=
s
(
t
)
cos
ω
c
t
e_{\rm 2ASK}=s(t)\cos\omega_ct
e2ASK=s(t)cosωct;
P
2
A
S
K
(
f
)
=
[
P
s
(
f
+
f
c
)
+
P
s
(
f
−
f
c
)
]
/
4
P_{\rm 2ASK}(f)=[P_s(f+f_c)+P_s(f-f_c)]/4
P2ASK(f)=[Ps(f+fc)+Ps(f−fc)]/4, 连续谱取决于
g
(
t
)
g(t)
g(t) 经线性调制后的双边带谱, 离散谱由载波分量决定;
B
2
A
S
K
=
2
f
B
B_{\rm 2ASK}=2f_B
B2ASK=2fB.
二进制频移键控(2FSK):
e
2
F
S
K
=
s
1
(
t
)
cos
ω
1
t
+
s
2
(
t
)
cos
ω
2
t
e_{\rm 2FSK}=s_1(t)\cos\omega_1t+s_2(t)\cos\omega_2t
e2FSK=s1(t)cosω1t+s2(t)cosω2t;
P
2
F
S
K
(
f
)
=
[
P
s
1
(
f
+
f
c
)
+
P
s
1
(
f
−
f
c
)
]
/
4
+
[
P
s
2
(
f
+
f
c
)
+
P
s
2
(
f
−
f
c
)
]
/
4
P_{\rm 2FSK}(f)=[P_{s1}(f+f_c)+P_{s1}(f-f_c)]/4+[P_{s2}(f+f_c)+P_{s2}(f-f_c)]/4
P2FSK(f)=[Ps1(f+fc)+Ps1(f−fc)]/4+[Ps2(f+fc)+Ps2(f−fc)]/4, 连续谱由位于
f
1
f_1
f1 和
f
2
f_2
f2 处的双边谱叠加, 离散谱位于两个载频
f
1
f_1
f1 和
f
2
f_2
f2 处;
∣
f
1
−
f
2
∣
<
f
B
|f_1-f_2|<f_B
∣f1−f2∣<fB 时单峰,
∣
f
1
−
f
2
∣
>
f
B
|f_1-f_2|>f_B
∣f1−f2∣>fB 时双峰;
B
2
F
S
K
≈
∣
f
1
−
f
2
∣
+
2
f
B
B_{2FSK}\approx|f_1-f_2|+2f_B
B2FSK≈∣f1−f2∣+2fB.
二进制相移键控(2PSK):
e
2
P
S
K
=
A
cos
(
ω
c
t
+
φ
n
)
e_{\rm 2PSK}=A\cos(\omega_ct+\varphi_n)
e2PSK=Acos(ωct+φn);
P
2
P
S
K
(
f
)
=
[
P
s
(
f
+
f
c
)
+
P
s
(
f
−
f
c
)
]
/
4
P_{\rm 2PSK}(f)=[P_s(f+f_c)+P_s(f-f_c)]/4
P2PSK(f)=[Ps(f+fc)+Ps(f−fc)]/4,
P
=
1
2
P=\frac{1}{2}
P=21 时无离散谱;
B
2
P
S
K
=
2
f
B
B_{2PSK}=2f_B
B2PSK=2fB.
二进制差分相移键控(2DPSK):
e
2
D
P
S
K
=
A
cos
(
ω
c
t
+
Δ
φ
)
e_{\rm 2DPSK}=A\cos(\omega_ct+\Delta\varphi)
e2DPSK=Acos(ωct+Δφ);
P
2
D
P
S
K
(
f
)
=
[
P
s
(
f
+
f
c
)
+
P
s
(
f
−
f
c
)
]
/
4
P_{\rm 2DPSK}(f)=[P_s(f+f_c)+P_s(f-f_c)]/4
P2DPSK(f)=[Ps(f+fc)+Ps(f−fc)]/4.
产生: 模拟相乘法(乘法器); 数字键控法(开关电路).
解调: 非相干(BPF
→
\to
→ 包络检波器
→
\to
→ 抽样判决器); 相干(BPF
→
\to
→ 乘法器
→
\to
→ LPF
→
\to
→ 抽样判决器)
载波周期数
=
=
= 载频
/
/
/ 码元速率.
信噪比
r
=
a
2
2
σ
n
2
r=\frac{a^2}{2\sigma_n^2}
r=2σn2a2;
σ
n
2
=
n
0
B
\sigma_n^2=n_0B
σn2=n0B.
误码率给定时所需信噪比:
r
2
A
S
K
=
2
r
2
F
S
K
=
4
r
2
P
S
K
r_{\rm 2ASK}=2r_{\rm 2FSK}=4r_{\rm 2PSK}
r2ASK=2r2FSK=4r2PSK;
(
r
2
A
S
K
)
d
B
=
3
d
B
+
(
r
2
F
S
K
)
d
B
=
6
d
B
+
(
r
2
P
S
K
)
d
B
(r_{\rm 2ASK})_{\rm dB}=3_{\rm dB}+(r_{\rm 2FSK})_{\rm dB}=6_{\rm dB}+(r_{\rm 2PSK})_{\rm dB}
(r2ASK)dB=3dB+(r2FSK)dB=6dB+(r2PSK)dB.
r
r
r 给定时, 同调制方式的相干解调误码率更低; 大信噪比即
r
≫
1
r\gg 1
r≫1 时性能差距不大.
调制方法 | 信号带宽(反比于频率利用率) | 相干解调误码率(反比于抗噪声性能) | 非相干解调误码率(反比于抗噪声性能) | 对信道特性变化敏感性 |
---|---|---|---|---|
2ASK | 2 f B 2f_B 2fB | 1 2 e r f c ( r 4 ) ≈ e − r / 4 π r \frac{1}{2}{\rm erfc}(\sqrt{\frac{r}{4}})\approx\frac{e^{-r/4}}{\sqrt{\pi r}} 21erfc(4r)≈πre−r/4 | e − r / 4 2 \frac{e^{-r/4}}{2} 2e−r/4 | a 2 \frac{a}{2} 2a, 易受影响 |
2FSK | 2 f B + ∣ f 1 − f 2 ∣ 2f_B+|f_1-f_2| 2fB+∣f1−f2∣ | 1 2 e r f c ( r 2 ) ≈ e − r / 2 2 π r \frac{1}{2}{\rm erfc}(\sqrt{\frac{r}{2}})\approx\frac{e^{-r/2}}{\sqrt{2\pi r}} 21erfc(2r)≈2πre−r/2 | e − r / 2 2 \frac{e^{-r/2}}{2} 2e−r/2 | 等概时 0 0 0, 不易受影响 |
2PSK | 2 f B 2f_B 2fB | 1 2 e r f c ( r ) ≈ e − r 4 π r \frac{1}{2}{\rm erfc}(\sqrt{r})\approx\frac{e^{-r}}{\sqrt{4\pi r}} 21erfc(r)≈4πre−r | - | 无影响 |
2DPSK | 2 f B 2f_B 2fB | e r f c ( r ) ≈ e − r π r {\rm erfc}(\sqrt{r})\approx\frac{e^{-r}}{\sqrt{\pi r}} erfc(r)≈πre−r | e − r 2 \frac{e^{-r}}{2} 2e−r | - |
多进制调制: 采用多种基带波形; 牺牲抗噪声性能以换取更大的频带利用率; 多进制振幅键控(MASK), 多进制频段键控(MFSK), 多进制相位键控(MPSK), 多进制差分相位键控(QDPSK).
最小频移键控(MSK): 相位连续, 包络恒定, 占用带宽最小的二进制正交 2FSK 信号; 频率间隔为 2FSK 最小频率间隔, 码元持续时间内包含的波形周期必须为
1
4
\frac{1}{4}
41 载波周期数的整数倍, 相位在码元间连续, 包络正弦型恒定, 正交的两路码元偏置, 相邻频道干扰小.
Gauss 最小频移键控(GMSK): MSK 调制前先通过 Gauss 型 LPF; 更集中的功率谱密度进一步减小邻道的干扰, 但有码间串扰.
正交频分复用(OFDM): 多载波并行调制, 各路信号严格正交, 接收端能完全分离各路信号; 充分利用频带,
η
b
/
O
F
D
M
=
N
N
+
1
log
2
M
\eta_{\rm b/OFDM}=\frac{N}{N+1}\log_2M
ηb/OFDM=N+1Nlog2M(bps/Hz),
η
b
/
M
=
1
2
log
2
M
\eta_{\rm b/M}=\frac{1}{2}\log_2M
ηb/M=21log2M(bps/Hz); 每路子载波调制可不同, 频间隔
≥
1
T
B
\geq\frac{1}{T_B}
≥TB1.
最佳接收判别准则: 以错误概率最小为最佳准则;
P
(
1
)
/
P
(
0
)
<
f
0
(
r
)
/
f
1
(
r
)
P(1)/P(0)<f_0(r)/f_1(r)
P(1)/P(0)<f0(r)/f1(r) 时判为 “0”,
P
(
1
)
/
P
(
0
)
>
f
0
(
r
)
/
f
1
(
r
)
P(1)/P(0)>f_0(r)/f_1(r)
P(1)/P(0)>f0(r)/f1(r) 时判为 “1”.
二进制等概率双极性信号误码率:
P
e
=
1
2
e
r
f
c
[
E
b
(
1
−
ρ
)
2
n
0
]
P_e=\frac{1}{2}{\rm erfc}[\sqrt{\frac{E_b(1-\rho)}{2n_0}}]
Pe=21erfc[2n0Eb(1−ρ)], 其中
E
b
E_b
Eb 为码元能量,
ρ
\rho
ρ 为码元相关系数; 与信号波形无关.
普通接收机误码率达最佳接收水平: 匹配滤波法(抽样时刻上线性滤波器输出信噪比最大); 相关接收法(乘法器和积分器).