poj 2823 Sliding Window

摘要:

题目来源:http://poj.org/problem?id=2823

这道题采用单调队列的方法。

一直弄不明白单调队列是什么,在网上也找不到易懂的介绍。最后结合别人博客上的介绍和程序看才理解是怎么回事。(转载自:http://xuyemin520.is-programmer.com/posts/25964

我们从最简单的问题开始:

给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.

要求:

      f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1

问题的另一种描述就是用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值。

解法一:

很直观的一种解法,那就是从数列的开头,将窗放上去,然后找到这最开始的k个数的最大值,然后窗最后移一个单元,继续找到k个数中的最大值。

这种方法每求一个f(i),都要进行k-1次的比较,复杂度为O(N*k)。

那么有没有更快一点的算法呢?

解法二:

我们知道,上一种算法有一个地方是重复比较了,就是在找当前的f(i)的时候,i的前面k-1个数其它在算f(i-1)的时候我们就比较过了。那么我们能不能保存上一次的结果呢?当然主要是i的前k-1个数中的最大值了。答案是可以,这就要用到单调递减队列。

单调递减队列是这么一个队列,它的头元素一直是队列当中的最大值,而且队列中的值是按照递减的顺序排列的。我们可以从队列的末尾插入一个元素,可以从队列的两端删除元素。

1.首先看插入元素:为了保证队列的递减性,我们在插入元素v的时候,要将队尾的元素和v比较,如果队尾的元素不大于v,则删除队尾的元素,然后继续将新的队尾的元素与v比较,直到队尾的元素大于v,这个时候我们才将v插入到队尾。

2.队尾的删除刚刚已经说了,那么队首的元素什么时候删除呢?由于我们只需要保存i的前k-1个元素中的最大值,所以当队首的元素的索引或下标小于 i-k+1的时候,就说明队首的元素对于求f(i)已经没有意义了,因为它已经不在窗里面了。所以当index[队首元素]<i-k+1时,将队首 元素删除。

从上面的介绍当中,我们知道,单调队列与队列唯一的不同就在于它不仅要保存元素的值,而且要保存元素的索引(当然在实际应用中我们可以只需要保存索引,而通过索引间接找到当前索引的值)。

为了让读者更明白一点,我举个简单的例子。

假设数列为:8,7,12,5,16,9,17,2,4,6.N=10,k=3.

那么我们构造一个长度为3的单调递减队列:

首先,那8和它的索引0放入队列中,我们用(8,0)表示,每一步插入元素时队列中的元素如下:

0:插入8,队列为:(8,0)

1:插入7,队列为:(8,0),(7,1)

2:插入12,队列为:(12,2)

3:插入5,队列为:(12,2),(5,3)

4:插入16,队列为:(16,4)

5:插入9,队列为:(16,4),(9,5)

。。。。依此类推

那么f(i)就是第i步时队列当中的首元素:8,8,12,12,16,16,。。。

poj 2823 代码

View Code
 1 #include <stdio.h>
 2 #include <string.h>
 3 #include <stdlib.h>
 4 
 5 #define Maxn 1000005
 6 #define SP system("pause")
 7 
 8 int n, k;
 9 int num[Maxn], Index[Maxn], num_max[Maxn], num_min[Maxn];
10 
11 void Func_max()
12 {
13     int head = 1, tail = 0;
14     
15     for(int i=0; i<k; i++)
16     {
17         while((head <= tail) && (num_max[tail] < num[i]))
18             tail--;
19         num_max[++tail] = num[i];
20         Index[tail] = i;
21     }
22     printf("%d", num_max[head]);
23     for(int i=k; i<n; i++)
24     {
25         int index_min = i - k + 1;
26         
27         while((head <= tail) && (num_max[tail] < num[i]))
28             tail--;
29         num_max[++tail] = num[i];
30         Index[tail] = i;
31         
32         if(Index[head] < index_min)
33         {
34             head++;
35         }
36         printf(" %d", num_max[head]);
37     }
38     printf("\n");
39 }
40 
41 void Func_min()
42 {
43     int head = 1, tail = 0;
44     
45     for(int i=0; i<k; i++)
46     {
47         while((head <= tail) && (num_min[tail] > num[i]))
48             tail--;
49         num_min[++tail] = num[i];
50         Index[tail] = i;
51     }
52     printf("%d", num_min[head]);
53     for(int i=k; i<n; i++)
54     {
55         int index_min = i - k + 1;
56         
57         while((head <= tail) && (num_min[tail] > num[i]))
58             tail--;
59         num_min[++tail] = num[i];
60         Index[tail] = i;
61         
62         if(Index[head] < index_min)
63         {
64             head++;
65         }
66         printf(" %d", num_min[head]);
67     }
68     printf("\n");
69 }
70 
71 int main()
72 {
73     while(scanf("%d%d", &n, &k) != EOF)
74     {
75         for(int i=0; i<n; i++)
76             scanf("%d", &num[i]);
77         
78         if(k == 1)
79         {
80             printf("%d", num[0]);
81             for(int i=1; i<n; i++)
82                 printf(" %d", num[i]);
83             printf("\n");
84             
85             printf("%d", num[0]);
86             for(int i=1; i<n; i++)
87                 printf(" %d", num[i]);
88             printf("\n");
89         }
90         else
91         {
92             Func_min();
93             Func_max();
94         }
95     }
96     return 0;
97 }

 

 

转载于:https://www.cnblogs.com/zhjjla/archive/2013/03/06/2946275.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值