数据仓库-数据仓库主要特征

大数据 专栏收录该内容
18 篇文章 2 订阅

2. 数据仓库的主要特征

数据仓库是面向主题的(Subject-Oriented)、集成的(Integrated)、非易失的(Non-Volatile)和时变的(Time-Variant)数据集合,用以支持管理决策。

2.1 面向主题

传统数据库中,最大的特点是面向应用进行数据的组织,各个业务系统可能是相互分离的。而数据仓库则是面向主题的。主题是一个抽象的概念,是较高层次上企业信息系统中的数据综合、归类并进行分析利用的抽象。 在逻辑意义上,它是对应企业中某一宏观分析领域所涉及的分析对象。
操作型处理(传统数据)对数据的划分并不适用于决策分析。而基于主题组织的数据则不同,它们被划分为各自独立的领域,每个领域有各自的逻辑内涵但互不交叉,在抽象层次上对数据进行完整、一致和准确的描述。一些主题相关的数据通常分布在多个操作型系统中。

2.2 集成性

通过对分散、独立、异构的数据库数据进行抽取、清理、转换和汇总便得到了数据仓库的数据 ,这样保证了数据仓库内的数据关于整个企业的一致性。
数据仓库中的综合数据不能从原有的数据库系统直接得到。因此在数据进入数据仓库之前,必然要经过统一与综合,这一步是数据仓库建设中最关键、最复杂的一步,所要完成的工作有:
(1)要统一源数据中所有矛盾之处 ,如字段的同名异义、异名同义、单位不统一、字长不一致,等等。
(2)进行数据综合和计算 。数据仓库中的数据综合工作可以再从原有数据库抽取数据时生成,但许多是在数据仓库内部生成的,即进入数据仓库以后进行综合生成的。
下图说明一个保险公司综合数据的简单处理过程,其中数据仓库中与“保险”主题有关的数据来自于多个不同的操作型系统。这些系统内部数据的命名可能不同,数据格式也可能不同。把不同来源的数据存储到数据仓库之前,需要去除这些不一致。
图:数据仓库的数据集成
图:数据仓库的数据集成

“ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL的质量问题具体表现为正确性、完整性、一致性、完备性、有效性、时效性和可获取性等几个特性。

2.3 非易失性(不可更新性)

操作型数据库主要服务于日常的业务操作,使得数据库需要不断地对数据实时更新,以便迅速获得当前最新数据,不至于影响正常的业务运作。在数据仓库中只要保存过去的业务数据,不需要每一笔业务都实时更新数据仓库,而是根据商业需要每隔一段时间把一批较新的数据导入数据仓库。
数据仓库的数据反映的是一段相当长的时间内历史数据的内容 ,是不同时点的数据库快照的集合,以及基于这些快照进行统计、综合和重组的导出数据。
数据非易失性主要是针对应用而言。数据仓库的用户对数据的操作大多是数据查询或比较复杂的挖掘,一旦数据进入数据仓库以后,一般情况下被较长时间保留。数据仓库中一般有大量的查询操作,但修改和删除操作很少 。因此,数据经加工和集成进入数据仓库后是极少更新的,通常只需要定期的加载和更新。

2.4 时变性

数据仓库包含各种粒度的历史数据。数据仓库中的数据可能与某个特定日期、星期、月份、季度或者年份有关。数据仓库的目的是通过分析企业过去一段时间业务的经营状况,挖掘其中隐藏的模式。 虽然数据仓库的用户不能修改数据,但并不是说数据仓库的数据是永远不变的。分析的结果只能反映过去的情况,当业务变化后,挖掘出的模式会失去时效性。因此数据仓库的数据需要更新,以适应决策的需要 。从这个角度讲,数据仓库建设是一个项目,更是一个过程。数仓仓库的数据虽时间的变化表现在以下几个方面。
(1)数据仓库的数据时限一般要远远长于操作型数据的数据时限。
(2)操作型系统存储的是当前数据,而数据仓库中的数据是历史数据。
(3)数据仓库中的数据是按照时间顺序追加的,它们都带有时间属性。

  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

随着人们对数据系统研究、管理、维护等方面的深刻识认和不断完善,在总结、丰富、集中多行企业信息的经验之后,为数据仓库给出了更为精确的定义,即“数据仓库是在企业管理和决策中面向主题的、集成的、与时间相关的、不可修改的数据集合”。<br><br>数据仓库并没有严格的数学理论基础,也没有成熟的基本模式,且更偏向于工程,具有强烈的工程性。因此,在技术上人们习惯于从工作过程等方面来分析,并按其关键技术部份分为数据的抽取、存储与管理以及数据的表现等三个基本方面。 <br><br>  ⑴数据的抽取:数据的抽取是数据进入仓库的入口。由于数据仓库是一个独立的数据环境,它需要通过抽取过程将数据从联机事务处理系统、外部数据源、脱机的数据存储介质中导入到数据仓库数据抽取在技术上主要涉及互连、复制、增量、转换、调度和监控等方面。数据仓库中的数据并不要求与联机事务处理系统保持实时同步,因此数据抽取可以定时进行,但多个抽取操作执行的时间、相互的顺序、成败对数据仓库中信息的有效性则至关重要。 <br><br>  ⑵存储和管理:数据仓库的真正关键是数据的存储和管理。数据仓库的组织管理方式决定了它有别于传统数据库,同时也决定了其对外部数据的表现形式。要决定采用什么产品和技术来建立数据仓库的核心,则需要从数据仓库的技术特点着手分析。 <br><br>  ⑶数据的表现:数据表现实际上相当于数据仓库的门面,其性能主要集中在多维分析、数理统计和数据挖掘方面。而多维分析又是数据仓库的重要表现形式,近几年来由于互联网的发展,使得多维分析领域的工具和产品更加注重提供基于Web前端联机分析界面,而不仅仅是在网上发布数据。 <br><br>  提到数据仓库,人们难免会想到仅有一字之差的数据库,那么,数据仓库和我们经常提到的数据库有哪些区别呢?为什么要使用数据仓库呢?<br><br>从数据库数据仓库 <br>  市场需求是技术发展的源动力。在数据库应用的早期,计算机系统所处理的是从无到有的问题,是传统手工业务自动化的问题。例如银行的储蓄系统、电信的计费系统,它们都属于典型的联机事务处理系统。在当时,一个企业可以简单地通过拥有联机事务处理的计算机系统而获得强的市场竞争力。记得在80年代末,北京工商银行率先推出了全市个人储蓄通存通兑业务,广市民便将先前就近存于不同银行的存款一并取出而存入了工商银行。这便是通过联机事务处理系统而获得市场优势的案例。其次,当时单位容量的联机存储介质比现在昂贵得多,相对于市场竞争的压力,将量的历史业务数据长时间联机保存去用于分析显然是过于奢侈了。因此,联机事务处理系统只涉及当前数据,系统积累下的历史业务数据往往被转储到脱机的环境中。此外,在计算机系统应用的早期,还没有积累量的历史数据可供统计与分析。从而,联机事务处理成为整个80年代直到90年代初数据库应用的主流。 <br><br>  然而,应用在不断地进步,当联机事务处理系统应用到一定阶段的时候,企业家们便发现单靠拥有联机事务处理系统已经不足以获得市场竞争的优势;他们需要对其自身业务的运作以及整个市场相关行业的态势进行分析,从而做出有利的决策。同样就拿北京各银行的储蓄业务来说,如今各家都拥有了联网的储蓄系统,再要获得市场竞争的优势,就需要在决策上下功夫,例如在业务密集地区增设自助网点、推出有针对性(如:某类职业圈、某年龄段)的储蓄服务计划。这些决策需要对量的业务数据包括历史业务数据进行分析才能得到,而这种基于业务数据的决策分析,我们把它称之为联机分析处理。如果说传统联机事务处理强调的是更新数据库——向数据库中添加信息,那么联机分析处理就是要从数据库中获取信息、利用信息。因此,著名的数据仓库专家Ralph Kimball写道:“我们花了20多年的时间将数据放入数据库,如今是该将它们拿出来的时候了。” <br><br>  事实上,将量的业务数据应用于分析和统计原本是一个非常简单和自然的想法。但在实际的操作中,人们却发现要获得有用的信息并非想象的那么容易:第一,所有联机事务处理强调的是数据更新处理性能和系统的可靠性,并不关心数据查询的方便与快捷;联机分析和事务处理对系统的要求不同,同一个数据库在理论上难以做到两全;第二,业务数据往往被存放于分散的异构环境中,不易统一查询访问,而且还有量的历史数据处于脱机状态,形同虚设;第三,业务数据的模式是针对事务处理系统而设计的,数据的格式和描述方式并不适合非计算机专业人员进行业务上的分析和统计。于是,有人感叹:20年前查询不到数据是因为数据太少了,而今天查询不到数据是因为数据太多了。针对这一问题,人们专门为业务的统计分析建立一个数据中心,它的数据可以从联机的事务处理系统、异构的外部数据源、脱机的历史业务数据中得到;它是一个联机的系统,专门为分析统计和决策支持应用服务,通过它可满足决策支持和联机分析应用所要求的一切。这个数据中心就叫做数据仓库。如果需要给数据仓库一个定义的话,那么可以把它看作一个作为决策支持系统和联机分析应用数据源的结构化数据环境。数据仓库所要研究和解决的问题就是从数据库中获取信息。 <br><br>  那么数据仓库数据库(主要指关系数据库)又是什么关系呢?回想当初, 人们固守封闭式系统是出于对事务处理的偏爱, 人们选择关系数据库是为了方便地获得信息。我们只要翻开 C.J. Date博士的经典之作《An Introduction to Database Systems》便会发现:今天数据仓库所要提供的正是当年关系数据库要所倡导的。然而,“成也萧何,败也萧何”,由于关系数据库系统在联机事务处理应用中获得的巨成功,使得人们已不知不觉将它划归为事务处理的范畴;过多地关注于事务处理能力的提高,使得关系数据库在面对联机分析应用时又显得“老革命遇到新问题”——今天的数据仓库对关系数据库的联机分析能力提出了更高的要求,采用普通关系型数据库作为数据仓库在功能和性能上都是不够的,它们必须有专门的改进。因此,数据仓库数据库的区别不仅仅是应用的方法和目的上的,同时也涉及产品和配置。 <br><br>  以辩证的眼光来看,数据仓库的兴起实际上是数据管理的一种回归,是螺旋式的上升。今天的数据库就好比当年的层次数据库和网型数据库,它们面向事务处理;今天的数据仓库就好比是当年的关系数据库,它针对联机分析。所不同的是,今天的数据仓库不必再为联机事务处理的特性而奔忙,由于技术的专业化,它可更专心于联机分析领域的发展和探索。 <br><br>  从厂商的角度看,经过长期发展,联机事务处理系统的市场至90年代中期出现饱和迹象,其增长速度明显减慢。这导致各大数据库厂商的传统业务增长面临严峻挑战,寻求新的业务增长点成为他们的当务之急。数据仓库的兴起无疑为数据库产品创造了巨的市场,它成为20世纪末到21世纪初数据库市场的一个新的增长点。因此,数据仓库这个词儿打一开始便伴随着轰轰烈烈的市场炒作。对于广用户来说,只有从自身应用需求出发,破除技术和概念的神秘性,奉行“拿来主义”,避虚就实,密切关注技术发展的方向,方可获得满意的产品、解决方案和经济效益。 <br><br>  总之,数据仓库并非是一个仅仅存储数据的简单信息库,因为这实际上与传统数据库没有两样。数据仓库实际上是一个“以数据管理信息系统为基础的、附加在这个数据库系统之上的、存储了从企业所有业务数据库中获取的综合数据的、并能利用这些综合数据为用户提供经过处理后的有用信息的应用系统”。如果说传统数据库系统的重点与要求是快速、准确、安全、可靠地将数据存进数据库中的话,那么数据仓库的重点与要求就是能够准确、安全、可靠地从数据库中取出数据,经过加工转换成有规律信息之后,再供管理人员进行分析使用。<br>
©️2021 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值