转自:http://www.hnyzsz.net/Article/ShowArticle.asp?ArticleID=735
【石子合并】
在一个圆形操场的四周摆放着n 堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。
试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分。
【输入文件】
包含两行,第1 行是正整数n(1<=n<=100),表示有n堆石子。
第2行有n个数,分别表示每堆石子的个数。
【输出文件】
输出两行。
第1 行中的数是最小得分;第2 行中的数是最大得分。
【输入样例】
4
4 4 5 9
【输出样例】
43
54
【分析】
本题初看以为可以使用贪心法解决问题,但是事实上因为有必须相邻两堆才能合并这个条件在,用贪心法就无法保证每次都能取到所有堆中石子数最多的两堆。例如下面这个例子:
6
3 4 6 5 4 2
如果使用贪心法求最小得分,应该是如下的合并步骤:
第一次合并 3 4 6 5 4 2 2,3合并得分是5
第二次合并 5 4 6 5 4 5,4合并得分是9
第三次合并 9 6 5 4 5,4合并得分是9
第四次合并 9 6 9 9,6合并得分是15
第五次合并 15 9 15,9合并得分是24
总得分=5+9+9+15+24=62
但是如果采用如下合并方法,却可以得到比上面得分更少的方法:
第一次合并 3 4 6 5 4 2 3,4合并得分是7
第二次合并 7 6 5 4 2 7,6合并得分是13
第三次合并 13 5 4 2 4,2合并得分是6
第四次合并 13 5 6 5,6合并得分是11
第五次合并 13 11 13,11合并得分是24
总得分=7+13+6+11+24=61
由此我们知道本题是不可以使用贪心法求解的,上例中第五次合并石子数分别为13和11的相邻两堆。 这两堆石头分别由最初 的第1,2,3堆(石头数分别为3,4,6)和第4,5,6堆(石头数分别为5,4,2)经4次合并后形成的。于是问题又归结为如何使得这两个子序列的N-2次合并的得分总和最优。为了实现这一目标,我们将第1个序列又一分为二:第1、2堆构成子序列1,第3堆为子序列2。第一次合并子序列1中的两堆,得分7;第二次再将之与子序列2的一堆合并,得分13。显然对于第1个子序列来说,这样的合并方案是最优的。同样,我们将第2个子序列也一分为二;第4堆为子序列1,第5,6堆构成子序列2。第三次合 并子序列2中的2堆,得分6;第四次再将之与子序列1中的一堆合并,得分13。显然对于第二个子序列来说,这样的合并方案也是最优的。由此得出一个结论──6堆石子经过这样的5次合并后,得分的总和最小。
动态规划思路:
阶段i:石子的每一次合并过程,先两两合并,再三三合并,...最后N堆合并
状态s:每一阶段中各个不同合并方法的石子合并总得分。
决策:把当前阶段的合并方法细分成前一阶段已计算出的方法,选择其中的最优方案
具体来说我们应该定义一个数组s[i,j]用来表示合并方法,i表示从编号为i的石头开始合并,j表示从i开始数j堆进行合并,s[i,j]为合并的最优得分。
对于上面的例子来说,初始阶段就是s[1,1],s[2,1],s[3,1],s[4,1],s[5,1],s[6,1],因为一开始还没有合并,所以这些值应该全部为0。
第二阶段:两两合并过程如下,其中sum(i,j)表示从i开始数j个数的和
s[1,2]=s[1,1]+s[2,1]+sum(1,2)
s[2,2]=s[2,1]+s[3,1]+sum(2,2)
s[3,2]=s[3,1]+s[4,1]+sum(3,2)
s[4,2]=s[4,1]+s[5,1]+sum(4,2)
s[5,2]=s[5,1]+s[6,1]+sum(5,2)
s[6,2]=s[6,1]+s[1,1]+sum(6,2)
第三阶段:三三合并可以拆成两两合并,拆分方法有两种,前两个为一组或后两个为一组
s[1,3]=s[1,2]+s[3,1]+sum(1,3)或s[1,3]=s[1,1]+s[2,2]+sum(1,3),取其最优
s[2,3]=s[2,2]+s[4,1]+sum(2,3)或s[1,3]=s[2,1]+s[3,2]+sum(2,3),取其最优
.
.
.
第四阶段:四四合并的拆分方法用三种,同理求出三种分法的得分,取其最优即可。以后第五阶段、第六阶段依次类推,最后在第六阶段中找出最优答案即可。
由此得到算法框架如下:
For j←2 to n do {枚举阶段,从两两合并开始计算}
For i←1 to n do {计算当前阶段的n种不同状态的值}
For k←1 to j-1 do {枚举不同的分段方法}
begin
If i+k>n then t←(i+k) mod n else t←i+k {最后一个连第一个的情况处理}
s[i,j]←最优{s[i,k]+s[t,j-k]+sum[1,3]} {sum[i,j]表示从i开始数j个数的和}
end;
代码:
Pascal:
1 var 2 n:integer; 3 a:array[1..100] of longint; 4 s:array[1..100,1..100] of longint; 5 t:array[0..100,0..100] of longint; 6 i,j,k,temp,max,min:longint; 7 begin 8 assign(input,'shizi.in'); 9 reset(input); 10 readln(n); 11 fillchar(t,sizeof(t),0); {计算和数组} 12 for i:=1 to n do 13 read(a[i]); 14 for i:=1 to n do 15 for j:=1 to n do 16 for k:=i to i+j-1 do 17 begin 18 if k>n then temp:=k mod n else temp:=k; 19 t[i,j]:=t[i,j]+a[temp]; 20 end; 21 {动态规划求最大得分} 22 fillchar(s,sizeof(s),0); 23 for j:=2 to n do 24 for i:=1 to n do 25 for k:=1 to j-1 do 26 begin 27 if i+k>n then temp:=(i+k) mod n else temp:=i+k; {处理环形问题} 28 max:=s[i,k]+s[temp,j-k]+t[i,j]; 29 if s[i,j]<max then s[i,j]:=max; 30 end; 31 max:=0; {在最后的阶段状态中找最大得分} 32 for i:=1 to n do 33 if max<s[i,n] then max:=s[i,n]; 34 35 {动态规划求最小得分} 36 fillchar(s,sizeof(s),0); 37 for j:=2 to n do 38 for i:=1 to n do 39 begin 40 min:=maxlongint; 41 for k:=1 to j-1 do 42 begin 43 if i+k>n then temp:=(i+k) mod n else temp:=i+k; {处理环形问题} 44 s[i,j]:=s[i,k]+s[temp,j-k]+t[i,j]; 45 if min>s[i,j] then min:=s[i,j]; 46 end; 47 s[i,j]:=min; 48 end; 49 min:=maxlongint; {在最后的阶段状态中找最小得分} 50 for i:=1 to n do 51 if min>s[i,n] then min:=s[i,n]; 52 53 writeln(max); 54 writeln(min); 55 end.
C:
1 /* 2 3 DP: 4 之前没接触过的DP问题,思路不清晰,在参考玩别人思路后有点豁然开朗的感觉。 5 一般这种类似要计算到区间和的DP问题一般都达到O(n^3)的时间复杂度,其实与上一题的 6 最小m段和有点相似之处。 7 思路其实不难,难的是实现,没有一定的积累DP问题的实现是挺难的.求最大和最小 8 合并思路是一样的,我就只说求最大和并的思路。要求[1,n]间环形的最大合并,即要求 9 求子区间最大合并,逐步递推子状态...直至得出第i个开始合并n个数的最优解 10 11 状态转移方程: 12 dp_max[i][j]=Min(dp_max[i][k]+dp[(i+k+1)%(n+1)][j-k-1]+Sum(i,i+j)) 13 14 */ 15 #include<stdio.h> 16 #include<string.h> 17 #define inf 0x7ffffff 18 int sum[105]; //sum[i]表示第1个到第i石子数的和 19 int dp_max[105][105],dp_min[105][105]; //dp_max[i][j]表示重第i个开始合并后面j个的最大值 20 int n; 21 int Max(int a,int b) 22 { 23 return a>b?a:b; 24 } 25 int Min(int a,int b) 26 { 27 return a<b?a:b; 28 } 29 int Sum(int s,int e) //求s开始后e个数的和 30 { 31 if(s+e>n+1) 32 return Sum(s,n-s+1)+Sum(1,(s+e)%(n+1)); 33 return sum[s+e-1]-sum[s-1]; 34 } 35 void DP(int &max_n,int &min_n) 36 { 37 memset(dp_max,0,sizeof(dp_max)); 38 memset(dp_min,0,sizeof(dp_min)); 39 for(int j=2;j<=n;j++){ //连续j个合并 40 for(int i=1;i<=n;i++){ //第i个起 41 dp_max[i][j]=0; 42 dp_min[i][j]=inf; 43 for(int k=1;k<j;k++){ 44 int temp=(i+k)>n?(i+k)%n:(i+k); 45 dp_max[i][j]=Max(dp_max[i][k]+dp_max[temp][j-k]+Sum(i,j),dp_max[i][j]); 46 dp_min[i][j]=Min(dp_min[i][k]+dp_min[temp][j-k]+Sum(i,j),dp_min[i][j]); 47 } 48 } 49 } 50 max_n=dp_max[1][n]; 51 min_n=dp_min[1][n]; 52 for(int i=2;i<=n;i++){ 53 max_n=Max(max_n,dp_max[i][n]); 54 min_n=Min(min_n,dp_min[i][n]); 55 } 56 } 57 int main(void) 58 { 59 int max_n,min_n; 60 while(scanf("%d",&n)!=EOF) 61 { 62 sum[0]=0; 63 for(int i=1;i<=n;i++){ 64 scanf("%d",&sum[i]); 65 sum[i]+=sum[i-1]; 66 } 67 DP(max_n,min_n); 68 printf("Max=%d\nMin=%d\n",max_n,min_n); 69 } 70 return 0; 71 } 72 73 /* 74 75 test case: 76 77 5 78 1 2 3 4 5 79 80 6 81 3 4 6 5 4 2 82 83 */