DP石子合并问题

转自:http://www.hnyzsz.net/Article/ShowArticle.asp?ArticleID=735

【石子合并】
    在一个圆形操场的四周摆放着n 堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。
    试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分。 
【输入文件】
 包含两行,第1 行是正整数n(1<=n<=100),表示有n堆石子。
 第2行有n个数,分别表示每堆石子的个数。 
【输出文件】
 输出两行。 
 第1 行中的数是最小得分;第2 行中的数是最大得分。 
【输入样例】
4
4 4 5 9
【输出样例】
43
54

【分析】
    本题初看以为可以使用贪心法解决问题,但是事实上因为有必须相邻两堆才能合并这个条件在,用贪心法就无法保证每次都能取到所有堆中石子数最多的两堆。例如下面这个例子:
    6
    3 4 6 5 4 2
    如果使用贪心法求最小得分,应该是如下的合并步骤:
        第一次合并 3 4 6 5 4 2    2,3合并得分是5
        第二次合并 5 4 6 5 4      5,4合并得分是9
        第三次合并 9 6 5 4        5,4合并得分是9
        第四次合并 9 6 9          9,6合并得分是15
        第五次合并 15 9           15,9合并得分是24
        总得分=5+9+9+15+24=62
    但是如果采用如下合并方法,却可以得到比上面得分更少的方法:
        第一次合并 3 4 6 5 4 2     3,4合并得分是7
        第二次合并 7 6 5 4 2       7,6合并得分是13
        第三次合并 13 5 4 2        4,2合并得分是6
        第四次合并 13 5 6          5,6合并得分是11
        第五次合并 13 11           13,11合并得分是24
        总得分=7+13+6+11+24=61
    由此我们知道本题是不可以使用贪心法求解的,上例中第五次合并石子数分别为13和11的相邻两堆。 这两堆石头分别由最初 的第1,2,3堆(石头数分别为3,4,6)和第4,5,6堆(石头数分别为5,4,2)经4次合并后形成的。于是问题又归结为如何使得这两个子序列的N-2次合并的得分总和最优。为了实现这一目标,我们将第1个序列又一分为二:第1、2堆构成子序列1,第3堆为子序列2。第一次合并子序列1中的两堆,得分7;第二次再将之与子序列2的一堆合并,得分13。显然对于第1个子序列来说,这样的合并方案是最优的。同样,我们将第2个子序列也一分为二;第4堆为子序列1,第5,6堆构成子序列2。第三次合 并子序列2中的2堆,得分6;第四次再将之与子序列1中的一堆合并,得分13。显然对于第二个子序列来说,这样的合并方案也是最优的。由此得出一个结论──6堆石子经过这样的5次合并后,得分的总和最小。 
    动态规划思路:
    阶段i:石子的每一次合并过程,先两两合并,再三三合并,...最后N堆合并
    状态s:每一阶段中各个不同合并方法的石子合并总得分。
    决策:把当前阶段的合并方法细分成前一阶段已计算出的方法,选择其中的最优方案
    具体来说我们应该定义一个数组s[i,j]用来表示合并方法,i表示从编号为i的石头开始合并,j表示从i开始数j堆进行合并,s[i,j]为合并的最优得分。
    对于上面的例子来说,初始阶段就是s[1,1],s[2,1],s[3,1],s[4,1],s[5,1],s[6,1],因为一开始还没有合并,所以这些值应该全部为0。
    第二阶段:两两合并过程如下,其中sum(i,j)表示从i开始数j个数的和
              s[1,2]=s[1,1]+s[2,1]+sum(1,2)
              s[2,2]=s[2,1]+s[3,1]+sum(2,2)
              s[3,2]=s[3,1]+s[4,1]+sum(3,2)
              s[4,2]=s[4,1]+s[5,1]+sum(4,2)
              s[5,2]=s[5,1]+s[6,1]+sum(5,2)
              s[6,2]=s[6,1]+s[1,1]+sum(6,2)
    第三阶段:三三合并可以拆成两两合并,拆分方法有两种,前两个为一组或后两个为一组
         s[1,3]=s[1,2]+s[3,1]+sum(1,3)或s[1,3]=s[1,1]+s[2,2]+sum(1,3),取其最优
         s[2,3]=s[2,2]+s[4,1]+sum(2,3)或s[1,3]=s[2,1]+s[3,2]+sum(2,3),取其最优
                             .
                             .
                             .
    第四阶段:四四合并的拆分方法用三种,同理求出三种分法的得分,取其最优即可。以后第五阶段、第六阶段依次类推,最后在第六阶段中找出最优答案即可。

    由此得到算法框架如下:
    For j←2 to n do    {枚举阶段,从两两合并开始计算}
      For i←1 to n do   {计算当前阶段的n种不同状态的值}
         For k←1 to j-1 do {枚举不同的分段方法}
           begin
             If i+k>n then t←(i+k) mod n else t←i+k {最后一个连第一个的情况处理}
             s[i,j]←最优{s[i,k]+s[t,j-k]+sum[1,3]} {sum[i,j]表示从i开始数j个数的和}
           end;

 

代码:

Pascal:

 1 var
 2  n:integer;
 3  a:array[1..100] of longint;
 4  s:array[1..100,1..100] of longint;
 5  t:array[0..100,0..100] of longint;
 6  i,j,k,temp,max,min:longint;
 7 begin
 8   assign(input,'shizi.in');
 9   reset(input);
10   readln(n);
11   fillchar(t,sizeof(t),0);      {计算和数组}
12   for i:=1 to n do
13     read(a[i]);
14   for i:=1 to n do
15     for j:=1 to n do
16       for k:=i to i+j-1 do
17         begin
18           if k>n then temp:=k mod n else temp:=k;
19           t[i,j]:=t[i,j]+a[temp];
20         end;
21 {动态规划求最大得分}
22   fillchar(s,sizeof(s),0);
23   for j:=2 to n do
24     for i:=1 to n do
25       for k:=1 to j-1 do
26         begin
27           if i+k>n then temp:=(i+k) mod n else temp:=i+k;  {处理环形问题}
28           max:=s[i,k]+s[temp,j-k]+t[i,j];
29           if s[i,j]<max then s[i,j]:=max;
30         end;
31   max:=0;        {在最后的阶段状态中找最大得分}
32   for i:=1 to n do
33     if max<s[i,n] then max:=s[i,n];
34 
35 {动态规划求最小得分}
36   fillchar(s,sizeof(s),0);
37   for j:=2 to n do
38     for i:=1 to n do
39       begin
40         min:=maxlongint;
41         for k:=1 to j-1 do
42           begin
43             if i+k>n then temp:=(i+k) mod n else temp:=i+k;  {处理环形问题}
44             s[i,j]:=s[i,k]+s[temp,j-k]+t[i,j];
45             if min>s[i,j] then min:=s[i,j];
46           end;
47         s[i,j]:=min;
48       end;
49   min:=maxlongint;  {在最后的阶段状态中找最小得分}
50   for i:=1 to n do
51     if min>s[i,n] then min:=s[i,n];
52 
53   writeln(max);
54   writeln(min);
55 end.
View Code

C:

 1 /*
 2 
 3     DP:
 4         之前没接触过的DP问题,思路不清晰,在参考玩别人思路后有点豁然开朗的感觉。
 5     一般这种类似要计算到区间和的DP问题一般都达到O(n^3)的时间复杂度,其实与上一题的
 6      最小m段和有点相似之处。
 7          思路其实不难,难的是实现,没有一定的积累DP问题的实现是挺难的.求最大和最小
 8      合并思路是一样的,我就只说求最大和并的思路。要求[1,n]间环形的最大合并,即要求
 9      求子区间最大合并,逐步递推子状态...直至得出第i个开始合并n个数的最优解 
10     
11     状态转移方程:
12         dp_max[i][j]=Min(dp_max[i][k]+dp[(i+k+1)%(n+1)][j-k-1]+Sum(i,i+j)) 
13      
14 */
15 #include<stdio.h>
16 #include<string.h>
17 #define inf 0x7ffffff 
18 int sum[105]; //sum[i]表示第1个到第i石子数的和 
19 int dp_max[105][105],dp_min[105][105]; //dp_max[i][j]表示重第i个开始合并后面j个的最大值 
20 int n;
21 int Max(int a,int b)
22 {
23     return a>b?a:b;
24 }
25 int Min(int a,int b)
26 {
27     return a<b?a:b;
28 }
29 int Sum(int s,int e) //求s开始后e个数的和 
30 {
31     if(s+e>n+1)
32         return Sum(s,n-s+1)+Sum(1,(s+e)%(n+1));
33     return sum[s+e-1]-sum[s-1];
34 } 
35 void DP(int &max_n,int &min_n)
36 {
37     memset(dp_max,0,sizeof(dp_max));
38     memset(dp_min,0,sizeof(dp_min));
39     for(int j=2;j<=n;j++){  //连续j个合并 
40         for(int i=1;i<=n;i++){ //第i个起 
41             dp_max[i][j]=0;
42             dp_min[i][j]=inf;
43             for(int k=1;k<j;k++){
44                 int temp=(i+k)>n?(i+k)%n:(i+k);
45                 dp_max[i][j]=Max(dp_max[i][k]+dp_max[temp][j-k]+Sum(i,j),dp_max[i][j]);
46                 dp_min[i][j]=Min(dp_min[i][k]+dp_min[temp][j-k]+Sum(i,j),dp_min[i][j]);
47             }
48         }
49     }
50     max_n=dp_max[1][n];
51     min_n=dp_min[1][n];
52     for(int i=2;i<=n;i++){
53         max_n=Max(max_n,dp_max[i][n]);
54         min_n=Min(min_n,dp_min[i][n]);
55     }
56 }
57 int main(void)
58 {
59     int max_n,min_n;
60     while(scanf("%d",&n)!=EOF)
61     {
62         sum[0]=0;
63         for(int i=1;i<=n;i++){
64             scanf("%d",&sum[i]);
65             sum[i]+=sum[i-1];
66         }
67         DP(max_n,min_n);
68         printf("Max=%d\nMin=%d\n",max_n,min_n);
69     }
70     return 0;
71 }
72     
73 /*
74 
75 test case:
76 
77 5
78 1 2 3 4 5
79 
80 6
81 3 4 6 5 4 2
82 
83 */
View Code

 

转载于:https://www.cnblogs.com/GO-NO-1/p/3436458.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值