anshuai_aw1
码龄12年
关注
提问 私信
  • 博客:2,246,191
    社区:7
    2,246,198
    总访问量
  • 85
    原创
  • 1,892,139
    排名
  • 1,345
    粉丝
  • 12
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2013-01-17
博客简介:

anshuai_aw1的博客

查看详细资料
个人成就
  • 获得3,112次点赞
  • 内容获得423次评论
  • 获得11,620次收藏
  • 代码片获得4,520次分享
创作历程
  • 5篇
    2021年
  • 15篇
    2020年
  • 21篇
    2019年
  • 73篇
    2018年
成就勋章
TA的专栏
  • 机器学习
    49篇
  • 数据库
  • 集成学习
    12篇
  • Recommender Algorithm&System
    5篇
  • Python
    21篇
  • 开发工具
    7篇
  • 概率论与数理统计
    10篇
  • 深度学习
    19篇
  • 大数据
    14篇
  • NLP
    1篇
  • 数据挖掘
    3篇
  • 算法
    6篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

事务相关博客

事务的多版本控制浅谈数据库并发控制 - 锁和 MVCC多版本并发控制2个结合看。『浅入深出』MySQL 中事务的实现分布式事务的实现原理
转载
发布博客 2021.08.31 ·
681 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Consistency = Consensus?

Consistency = Consensus?词典会告诉你,Consusens的意思就是“一致”(我想这也许就是中文文献中对“一致性”误用的根源),似乎和Consistency是一样的?答案是否定的。虽然这两个单词的译意接近,但是在分布式系统中作为专业名词来讲,其代表的含义实则相差甚远。我们常说的“一致性(Consistency)”在分布式系统中指的是副本(Replication)问题中对于同一个数据的多个副本,其对外表现的数据一致性,如线性一致性、因果一致性、最终一致性等,都是用来描述副本问题中的一
转载
发布博客 2021.06.05 ·
936 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Database consistency

consistency 这个词在不同的环境下有着不同的含义,各个方向都在使用,导致很难理解:多副本的一致性,即distirbuted一致性hash.CAP理论的一致性ACID里的一致性而这几个一致性的含义都不相同。结合各种资料,自己做个总结方便查阅。一、事务的ACID中的C第一种理解首先来解释下ACID中的Consistency怎么解决。参考文献【1】中的sleep deep解释得很好。直接复制过来:请看下面Wikipedia中关于数据库事务一致性的定义Consistency e
转载
发布博客 2021.06.03 ·
664 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

cache consistency: Read-Through, Write-Through, Write-Behind

花点时间记录一下自己对cache的一些基本概念的理解。cache的功能这里略去。一、cache consistencycache consistency这个概念到处都在用。但是各有各的解释,容易模糊。在这里,借助参考文章【1】中的定义简单化这个概念:eventually the value of key k should be the same as the underlying data store, if k exits in cache.即只要cache中的值和back-end中的值一致,
原创
发布博客 2021.05.23 ·
634 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

FIF 最优性的证明

简单记录一下如何证明page replacement algorithm是offline optimal的算法。主要参考文献【1】https://blog.henrypoon.com/blog/2014/02/02/proof-of-the-farthest-in-future-optimal-caching-algorithm/【2】CSE 202: Design and Analysis of Algorithms【3】大数据算法课程笔记8a:page replacement algor
原创
发布博客 2021.01.18 ·
663 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

Amortized analysis平摊分析和Competitve analysis竞争分析的关系

文章目录一、Amortized analysis平摊分析1.1 引言1.2 聚类分析 aggregate method1.2.1 栈1.2.2 计数器1.3 记账方法 accounting method1.3.1 栈1.3.2 计数器1.4 势能方法potential method1.4.1 栈1.4.2 计数器1.5 动态表1.5.1 聚类分析1.5.2 记账分析1.5.3 势能分析1.6 记账方法和势能方法的关系二、势能法用于竞争分析2.1 自组织表(self-organizing lists)参考文献
原创
发布博客 2020.09.18 ·
1379 阅读 ·
2 点赞 ·
1 评论 ·
8 收藏

在线算法(online algorithm)--竞争性分析

文章目录一、competitve analysis二、page replacement2.1 问题背景2.2 deterministic online algorithm2.2.1 LIFO和LFU不是α\alphaα-竞争算法2.2.2 LRU和FIFO是kkk-竞争算法2.3 deterministic online algorithm的竞争比是Ω(k)\Omega(k)Ω(k)参考文献基于参考材料,和自己的理解,本文主要整理了在线学习中的竞争性分析,和它的典型例子:page replacement问
原创
发布博客 2020.09.08 ·
10498 阅读 ·
30 点赞 ·
4 评论 ·
71 收藏

算法时间复杂度分析——大O、大Ω、大θ、小o,小ω

最近开始转战传统算法分析的研究工作了,重新拾起以前学过的一些内容。目录一、概述二、对常见的Ο和Ω进行分析2.1 大O表示法2.2 大Ω表示法三、P问题,NP问题,NP-hard问题,NPC问题3.1P问题和NP问题3.2 NPC问题和NPH问题参考文献:一、概述Ο,读音:big-oh;表示上界,小于等于。Ω,读音:big omega、欧米伽;表示下界,大于等于。Θ,读音:theta、西塔;既是上界也是下界,称为确界,等于。ο,读音:small-oh;.
原创
发布博客 2020.09.07 ·
52619 阅读 ·
113 点赞 ·
8 评论 ·
371 收藏

Pytorch入门笔记

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
原创
发布博客 2020.07.15 ·
810 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

理解多元高斯分布

p(x;μ,Σ)=1(2π)n/2∣Σ∣1/2exp⁡(−12(x−μ)TΣ−1(x−μ))p(x;\mu , \Sigma)=\frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}}\exp(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu))p(x;μ,Σ)=(2π)n/2∣Σ∣1/21​exp(−21​(x−μ)TΣ−1(x−μ))此时我们说随机变量 [公式] 服从一元标准高斯分布, 其均值 [公式] , 方差 [公式] , 其概率密度函数为Z=X−
转载
发布博客 2020.05.08 ·
5631 阅读 ·
16 点赞 ·
0 评论 ·
36 收藏

关于协方差矩阵的理解

转载自《关于协方差矩阵的理解》
转载
发布博客 2020.05.07 ·
804 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

Hive操作的笔记:如何查Hive表某个分区的最后更新时间等

记录一些自己在工作的一些小功能的代码实现,不断补充记录。一、如何查Hive表某个分区的最后更新时间。通过查HDFS可以得知:1: 查询某个表的HDFS地址desc formatted app.app_vdp_cate_health_cate1_coinuser_associndex;2: 进入到地址中dfs -ls hdfs://ns7/user/mart_vdp/...
原创
发布博客 2020.04.02 ·
4333 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

推荐系统(二):PNN源论文整理和思考

文章目录一、背景二、PNN思想和模型三、优化四、代码实践。参考文献一、背景PNN源论文为《Product-based Neural Networks for User Response Prediction》,是上海交大团队发表在ICDM 2016上。本文在阅读源论文和网上其它资料的基础上,重点整理了论文的细节和思想。我们已经知道,在信息检索领域(IR,Information Retriev...
原创
发布博客 2020.03.31 ·
1418 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

(二)FFM(Field-aware Factorization Machine)原理

一、背景FFM算法,全称是Field-aware Factorization Machines,是FM(Factorization Machines)的改进版。FFM由Yu-Chin Juan与其比赛队员提出,他们借鉴了field(域)概念提出了FM的升级版模型。简单来说,通过引入field的概念,FFM把相同性质的特征归于同一个field。本文主要介绍FFM的理论,由于其算法复杂度比较高,在...
原创
发布博客 2020.03.30 ·
2634 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

推荐系统(一):Wide & Deep源论文整理和思考

最近有一批业务需要用到推荐算法,因此,准备认真整理一下自己学习的推荐算法的思路,以便于正确地应用和对比。一、推荐算法1.1 背景首先应该需要了解推荐算法的一些基本思路,我之前整理过一篇《(一)推荐算法概述——以协同过滤为主》。简单来说,推荐系统分为两种: CF-Based(协同过滤)、Content-Based(基于内容的推荐)协同过滤(collaborative filtering)就...
原创
发布博客 2020.03.26 ·
3340 阅读 ·
11 点赞 ·
2 评论 ·
20 收藏

Tensorflow.Dataset中map,shuffle,repeat,batch的总结

Dataset API是TensorFlow 1.3版本中引入的一个新的模块,主要服务于数据读取,构建输入数据的pipeline。Google官方给出的Dataset API中的类图:我们本文只关注Dataset的一类特殊的操作:Transformation,即map,shuffle,repeat,batch等。在正式介绍之前,我们再回忆一下深度学习中的一些基本概念。batch siz...
原创
发布博客 2020.03.25 ·
10955 阅读 ·
30 点赞 ·
2 评论 ·
73 收藏

Tensorflow.feature_column的总结

一、简介tensorflow提供了一个功能强大的特征处理函数tf.feature_column,feature columns是原始数据与estimator之间的过程,其内容比较丰富,可以将各种各样的原始数据转换为estimator可以用的格式。特征数据主要包括categorical和dense(numeric或者continuous)两类,处理方法是使用tensorflow中的feature...
原创
发布博客 2020.03.24 ·
5044 阅读 ·
9 点赞 ·
0 评论 ·
15 收藏

Python: Matplotlib中subplots多子图绘图的一些tricks

本文转载自《Matplotlib中多子图绘图时,坐标轴及其label的几种排布方式》。目录1、最普通的2、只在最外层坐标轴显示 Label3、如果 x label和y label 都一样可以只显示一个4、刻度也只在最外侧显示5、或者Label仍然分开显示6、加入 colorbar7、整个 fig 共用一个 colorbar8、colorbar 横置9、...
转载
发布博客 2020.03.02 ·
11625 阅读 ·
25 点赞 ·
1 评论 ·
63 收藏

Git, GitHub和GitLab的区别和联系

话说有将近一年没更新过博客了。惭愧。今天整理下Git, GitHub和GitLab这三个名词的概念,虽然经常用GitHub,但是其实对于这些概念还是有些混淆。一、GitGit是一种版本控制系统,是一个命令和工具。Git是一个开源的分布式版本控制系统(Version Control System),它没有中央服务器的概念,用户需要修改某个文件时,必须把代码仓库完整地镜像下来而不是只提取...
原创
发布博客 2020.02.17 ·
788 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

解决Hive中collet_list列表排序混乱:sort_array

这篇文章写的比较扯淡。。。。由collect_list形成的列表经过concat_ws拼接后顺序具有随机性,要保证列表有序只需要在生成列表后使用sort_array函数进行排序即可。sort_array就是对array进行排序,且只能升序。我在这里举一个完整的例子和代码:如果,我们有如下的数据集(借助了参考文献1的数据),我们希望对memberid进行分组,依照legcount的顺序,...
原创
发布博客 2020.05.22 ·
10892 阅读 ·
9 点赞 ·
3 评论 ·
30 收藏
加载更多