自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(25)
  • 收藏
  • 关注

原创 python异常处理

5分钟彻底搞定python异常处理

2022-08-02 10:37:39 4643

原创 向量相似度评估方法

向量相似度评估方法

2022-07-25 17:27:37 6935

原创 Batch Normalization究竟学到了数据的什么信息?

原文链接:Batch Normalization究竟学到了数据的什么信息?大家好,我是泰哥。上节为大家介绍了数据归一化的发展历程,本节就讲讲Batch Normalization的计算思路,看看它究竟强在哪里?为什么它可以使模型梯度保持平稳。1 归一化不会改变数据分布任何归一化的本质都是对数据进行平移和放缩。平移:数据集每一列数据统一加上或减去某一个数缩放:数据集每一列数据统一除以或乘以某一个数import torchimport matplotlib.pyplot as plt#

2022-04-25 09:38:24 4588

转载 再聊聊梯度消失与梯度爆炸

原文链接:再聊聊梯度消失与梯度爆炸随着神经网络的层数变多、结构越来越复杂,模型在训练过程中就会遇到梯度消失和梯度爆炸导致模型不能有效收敛。那么你知道该问题是如何解决的吗?1 梯度消失与梯度爆炸神经网络在进行反向传播的过程中,各参数层的梯度计算会涉及到激活函数的导函数取值。具体来说,假设现在有一个三层的神经网络,XXX为输入,www为神经网络参数,F(x)F(x)F(x)为激活函数:y^=F(F(X∗w1)∗w2)∗w3\hat y = F(F(X * w_1) * w_2) * w_3y^​=F(

2022-04-14 16:03:00 4814

转载 数据归一化

数据归一化的重要性

2022-04-14 15:57:45 7102

原创 NLP标注神器:可同时对文本与实体进行标注

原文链接:NLP标注神器-可同时对文本与实体进行标注我之前做实体标注项目使用过标注精灵、BRAT、YEDDA、DeepDive等标注工具,这些工具虽然可以满足实体标注需求,但安装过程复杂、英文界面、有时会有卡顿,对标注人员都很不友好。而我目前要做的任务需要能同时对数据进行实体标注和文本分类标注,以上提到的工具都很难满足,分开标注效率又太低。于是我找到了rasa-nlu-trainer标注工具,免费、无需安装、无需注册、操作快捷且能同时标注,真是神器!今天就分享给大家。1 进入标注工具地址:https

2021-12-14 09:16:38 6348

原创 反向传播:计算图的追踪与停止

原文链接:计算图的追踪与停止反向传播梯度计算是模型收敛的必须手段,今天我们就看看PyTorch中反向传播是如何实现的。1 反向传播的基本过程x = torch.tensor(1., requires_grad = True)y = x ** 2z = y + 1与上节一样,我们构建x、y、z三者之间的函数关系。所谓反向传播,是在此前计算图中记录的函数关系中,反向传播函数关系,进而求得叶节点x的导数值。z# tensor(2., grad_fn=<AddBackward0>)

2021-12-13 14:21:10 686

原创 Pytorch库的基本架构

原文链接:Pytorch库的基本架构介绍很多同学说每次使用PyTorch时都需要导入很多模块,非常混乱,今天我就将PyTorch常用的模块做一个总结梳理。首先要说明的是PyTorch这是torch的Python版本,所以导入的是torch而不是Pytorch:import torch1 运行基础torch.tensor:基础数据结构torch.autograd:自动微分模块2 torch.utils支持神经网络相关的数据预处理。数据导入与处理utils.datautils.

2021-12-13 14:15:58 4776

原创 详解Pytorch动态图的回溯机制

原文链接:详解Pytorch动态图的回溯机制大家好,我是泰哥。《5分钟精通PyTorch》经过1个月的连载,已经介绍了张量的常规操作以及运算技巧。之后的章节就进入到深度学习部分,会以理论与代码结合的方式为大家呈现,帮助大家理解其中细节。对于动态图回溯机制的学习与理解,首先从张量的微分计算开始入手。注意本节我们暂时不区分微分值、导数值、梯度值的区别,后续讲解梯度下降时再进行区分。不理解的同学统一理解为导数即可。1 Variable与requires_grad有同学会说在进行微分运算时需提前将Ten

2021-12-13 14:08:38 5699

原创 新发布的《人工智能训练师国家职业技能标准》该如何解读?

AI因你而升温,记得加星标哦!大家好,我是泰哥。最近《人工智能训练师国家职业技能标准》 (文末复制链接下载)发布后被刷屏,我就网上热门观点与大家分享,同时谈谈我个人的看法。原文链接:新发布的《人工智能训练师国家职业技能标准》该如何解读?01 作者:桔了个仔你属于什么级别《人工智能训练师技能标准》一共18页,大家可以直接跳到最后两页,它把把人工智能训练师分为了五级,大家可以看看自己所拥有的技能属于哪级?虽然看着好像自己能考一级,但这里面还是有工作年限要求的。五级:有一年以上的相关工作经.

2021-12-02 11:27:26 5577

原创 为什么线代在人工智能中被广泛应用?

原文链接:为什么线代在人工智能中被广泛应用?大家好,我是泰哥。在机器学习建模过程中,经常会使用矩阵运算以提升效率,在深度学习中,往往会涉及矩阵的集合运算,就是三维或四维数据的计算。它们的基础就是线性代数理论,而线代基础的核心又是矩阵,矩阵的本质其实是线性方程!是不是很神奇?本文首先介绍矩阵的构造,然后详解矩阵的运算与本质意义。一、矩阵形变的构造矩阵的形变与构造的方法与二维张量的方法相同。# 创建一个2*3的矩阵t1 = torch.arange(6).reshape(2, 3).float()

2021-12-01 23:05:18 843

原创 人工智能该如何学习?详细的AI学习路线与资料推荐

AI因你而升温,记得加星标哦!大家好,我是泰哥。本文可谓是千呼万唤使出来,很多同学问我,AI方向的知识多而杂,哪些该重点学习?学习路径又是怎么样的呢?今天,我将自己的学习路径及我所参考的资料全部免费分享出来,愿大家的AI学习进阶之路上多一些“温度”。学习途径在我学习人工智能的过程中,主要有以下两个途径:首先是B站。我将所有知识点所推荐的视频链接直接贴设为了超链接,点击可直达教程。第二是书籍。视频的讲解难免会不全面,很多时候我们需要翻阅书籍对知识进行查漏补缺、透彻理解。本文提及所有书籍在文.

2021-11-25 16:37:30 14147

原创 Batch normalization和Layer normalization有什么区别?

AI因你而升温,记得加个星标哦!大家好,我是泰哥。在训练模型前,我们通常要对数据进行归一化处理来加速模型收敛。本文为大家介绍batch normalization和layer normalization的使用场景。1 为什么ML中用BN比较多?现在有一个batch内的人员特征数据,分别是年龄、身高和体重,我们需要根据这3个特征进行性别预测,在预测之前首先要进行归一化处理。ML & batch normalizationBN是针对每一列特征进行归一化,例如下图中计算的均值:BN这是.

2021-11-11 17:41:54 7684

转载 Python该如何优化代码进行提速?

在工作中,我们常常面临着代码提速优化问题,本文就为大家介绍几种Python常用的提速技巧。优化原则:1.先保证代码可以正确运行,再进行性能优化2.优化的选择通常是牺牲空间换取时间,所有我们需要权衡代价3.着重优化代码耗时的部分,通篇优化通常会降低代码的可读性0 定义耗时装饰器# 可监控程序运行时间import timedef clock(func): def wrapper(*args, **kwargs): start_time = time.time()

2021-11-03 11:24:07 137

原创 TensorFlow与PyTorch到底该如何选择?

后台很多同学问我深度学习框架到底该学TensorFlow还是PyTorch呢?我将在以下几个方面给出个人建议。一、易学性与操作性深度学习框架使用计算图来定义神经网络中执行的计算顺序。TF1使用的静态图机制,PyTorch使用动态图机制。静态图意味着计算图的构建和实际计算是分开完成(define and run)动态图意味着计算图的构建和实际计算是同时发生(define by run)有的同学可能对概念不太理解,我们通过一个例子来对比动态图和静态图机制在编程实现上的差异,分别基于TF1和PyTo

2021-11-03 11:22:17 8157

原创 Lock与RLock的区别

目录往期推荐介绍区别一区别二往期推荐Python多线程的使用Python线程池的使用Python多线程的安全问题B站同名【有温度的算法】已经上线想观看视频讲解的同学点击此处直达B站介绍在上节中为大家说明了线程访问临界资源,必须互斥的进行,从而引出了锁。在Python的threading模块中,为我们提供了Lock方法与RLock方法,都具备锁的功能,本节就为大家介绍一下两者在应用时的不同。区别一Lock被称为原始锁,一个线程只能请求一次;RLock被称为重入锁,可以被一个线程请求多次,

2021-09-03 14:08:54 269

原创 Python多线程的安全问题

目录往期推荐介绍map方法submit+as_completed方法往期推荐Python多线程的使用Python线程池的使用B站同名【有温度的算法】已经上线想观看视频讲解的同学点击此处直达B站介绍因为新建线程系统需要分配资源、终止线程系统需要回收资源,所以如果可以重用线程,则可以减去新建/终止的开销以提升性能。同时,使用线程池的语法比自己新建线程执行线程更加简洁。Python为我们提供了ThreadPoolExecutor来实现线程池,此线程池默认子线程守护。它的适应场景为突发性大量请求或

2021-09-03 14:02:28 132

原创 Python线程池的使用

目录往期推荐线程池介绍map方法submit+as_completed方法往期推荐Python多线程的使用B站同名【有温度的算法】已经上线想观看视频讲解的同学点击此处直达B站线程池介绍因为新建线程系统需要分配资源、终止线程系统需要回收资源,所以如果可以重用线程,则可以减去新建/终止的开销以提升性能。同时,使用线程池的语法比自己新建线程执行线程更加简洁。Python为我们提供了ThreadPoolExecutor来实现线程池,此线程池默认子线程守护。它的适应场景为突发性大量请求或需要大量线程完

2021-08-20 14:04:28 198

原创 Python多线程的使用

B站同名【有温度的算法】已经上线想观看视频讲解的同学在文末点击【原文链接】直达B站

2021-08-17 10:54:40 52

原创 力扣题目归类,顺序刷题不再难

目录介绍前奏-基础篇中篇-链表、树的相关操作进阶-回溯、动态规划脑筋急转弯介绍大家好,相信很多人都知道刷力扣的重要性,但是如果不能将题目很好的归类整理专一练习,而是东做一道西做一道,那么你坚持一段时间后就会发现自己没什么进步,最后反而很容易灰心放弃,相信很多新手都有这样的体验。我从各个网站及B站上扫了一圈各大博主的刷题指南并坚持5个月共刷了300多道题后,整理了一份刷题攻略,以解题方法或题目类型进行分类,帮助你快速掌握面试常考算法,助您面试不再难!我将刷题分为3部分,分别为前奏、中篇以及进阶。祝大家

2021-08-10 09:05:06 603

原创 AI科普(四):通俗易懂的机器学习模型

目录结论先行K近邻决策树总结相关推荐AI科普(一):什么是人工智能?[AI科普(二):人工智能的根本任务](https://blog.csdn.net/Antai_ZHU/article/details/119519134?spm=1001.2014.3001.5501)[AI科普(三):什么是算法?](https://blog.csdn.net/Antai_ZHU/article/details/119519584?spm=1001.2014.3001.5501)结论先行传统的机器学习主要运用可解

2021-08-08 20:02:37 363

原创 AI科普(三):什么是算法?

目录结论先行专家系统传统机器学习样本特征理解总结结论先行我们知道AI的应用场景是十分广泛的,所有这些问题归根结底都可分为分类问题或者回归问题,而最终计算机解决这些问题的方案,我们称之为算法。常用的算法类型有专家系统、传统机器学习与深度学习。专家系统通俗来说就是制定规则;传统的机器学习主要运用可解释的数学公式进行推导预测;而目前大火的深度学习则是模拟人脑神经元进行学习与预测,通常不具有可解释性,但却能很好的解决问题(之后会专篇介绍)。专家系统专家系统通俗的说就是利用以往知识与经验制定规则。比如我们

2021-08-08 19:52:11 3000

原创 AI科普(二):人工智能的根本任务

AI科普(二):人工智能的根本任务一、结论先行二、分类任务三、回归任务一、结论先行人工智能要处理的任务多种多样,比如人脸识别、垃圾邮件检测、电源票房预测、降雨量预测等等。但是这些任务背后的根本任务只有两类,就是分类与回归。分类任务:模型输出是对象的所属类别,数据类型是离散数据。例如预测一封邮件是否是垃圾邮件、预测照片中的人是男性还是女性还是偏中性?这种结果只有两个值或者多个值的问题,我们可以把每个值都当做一类,预测对象到底属于哪一类。对于结果只有两个值的问题,我们一般称为二分类问题,结果有多个值的问题

2021-08-08 19:19:54 605

原创 AI科普(一):什么是人工智能?

结论先行在各大网站上搜索人工智能的定义可谓各不相同,但核心思想就是实现让计算机拥有人类的智能。如果让我用一句话通俗总结AI是什么,我认为它分为两步,那就是先让计算机进行学习,然后让计算机预测未知。AI早期应用AI在互联网中的早期应用有识别垃圾邮件。我们的邮箱每天会收到众多邮件,而把垃圾邮件剔除就可以大大节约人们在垃圾邮件中浪费的时间。我们传统的方法是制定规则,比如一篇文章中大量出现“免费”“特价”“发财”“代理”“稳赢”等等关键词,我们就把它定义为垃圾邮件,根据设定的规则,然后让电脑去执行预测。这样做

2021-08-08 13:33:54 1137

原创 腾讯面试:赛马问题【超详细图解】64匹马,8个赛道,找出前4名最少比赛多少场?

大厂面试题:赛马问题引子:在面试大厂时,怎么也没想到会考我一道脑筋急转弯。问题:有64匹马和8条跑道,每次只允许最多8匹马同时比赛(假定每匹马每次比赛速度相同),但是没有秒表不能计时,问最少要比多少次,才能选出最快的4匹马?常规思路因为每匹马都至少得跑一次,而我们只需要选出最快的4匹,所以首先肯定得跑8场,每场淘汰4匹马。之后我们很容易想到将两组获胜的4匹马进行组合比赛,就可找到最快的4匹马。这样解题,共需4轮15次,但不是最优解。正确答案解析第一轮:8场把64匹马随机分为8组,总共比8场

2021-07-13 23:18:29 12598 3

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除